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Abstract

Edge diffracted waves resulting from surface discontinuities contribute
significantly to the radar cross section of an object. Although this problem
could be alleviated by altering the shape of the edge discontinuity, this is
not always possible due to other mission requirements.

The back-scatter from edge diffracted waves may also be reduced by
converting the incoming radar waves into surface waves whose intensity is
significantly reduced before reaching the surface discontinuity. This can be
achieved by employing isotropic surface wave absorbing materials backed
by a metal surface. However, for plane surface waves, the effectiveness of
these materials is shown to be strongly polarization dependent.

This work suggests a new strategy which involves replacing the scattering
surface by an electromagnetic soft surface. This would result in a complete
elimination of the edge diffracted waves in the radar direction,
independently of radar polarization.

Furthermore, a new measuring apparatus based on a partially filled
rectangular waveguide has been developed for determining the attenuation
constant and phase constant of plane surface waves propagating along
metal-backed surface wave absorbing materials. Measurements are
presented which validate this new measuring method.

Keywords:  RCS Management, Surface Waves, Radar Absorbing Materials,
Electromagnetic Measurements
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1 Introduction

1.1  Stealth Design

1.1.1 What is Stealth Design?

The purpose of designing an object in stealth technology is to reduce the
likelihood of betraying its presence and to minimize the probability of its
detection when active search and tracking techniques are employed [1]. For
an object to be “stealth”, it needs to have a low optical visibility in addition to
being low-observable in the infrared spectrum and at all radar frequency
bands. Also, the emission of acoustic noise should be low.
The theory and techniques presented in this text relate only to the
behaviour of objects illuminated by electromagnetic waves at radar
frequencies. Although the popular image of stealth is the realisation of
“invisible” targets, the practical aim is to achieve “low observability” for
certain aspect angles [2].

Stealth technology is generally associated with aircraft (Fig. 1.1), however
this technology also receives increasingly more attention in ship designs.
This is clearly demonstrated by the well-known French marine frigate “La
Fayette” and United States “Arsenal” and “Sea Shadow”. The Sea Shadow
(Fig. 1.2) has the ability to navigate on the information received from a
tactical data link solely, thus eliminating the need for a large number of
windows and onboard sensors [3]. The scarcity of external features further
reduces the radar cross section of the vessel. UK’s plans to build stealth
ships are also taking shape in the form of the “Sea Wraith” and “Project
Cougar” [4].

Figure 1.1: The F-117A stealth fighter plane; its “faceted” shape, internal
weapon bays and location of jet inlets are characteristic for many stealth
aircraft designs. Note also that the jet intakes are located on top of the
wings. Inset: The wings are indented at the rear end and the usual 90°
dihedral corner reflectors at the tail have been eliminated.
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(a)

(b)
Figure 1.2a: The United States “Sea Shadow”
Figure 1.2b: The number of discontinuities in the hull have been reduced to
an absolute minimum; only two hatches for the crew and one air inlet on the
roof of the vehicle.

Some of the stealth techniques employed in military designs also have
civilian applications. The “invisible” struts and masts described in [5] and [6]
are an excellent example of this. In these references is explained how a
ship-born radar will suffer less from blockage and unwanted echoes when
the masts in its immediate vicinity are treated with an electromagnetic hard
surface. (See also Chapter 5 in this text.)
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1.1.2 What is the Radar  Cross Section (RCS) of an Object?

The radar cross section (RCS) of an object is defined as the projected area
of an equivalent perfect reflector with uniform properties in all directions (i.e.
a sphere) and which will return the same amount of power per unit solid
angle (steradian) as the object [1]. The datum reference for RCS is often
taken as a sphere of 1m2 echoing area, that is a sphere with diameter

D m= ≈4 11284 2

π
. .

A more mathematical definition of RCS is [2]

σ π= ⋅
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where σ is the RCS and Ei  and Es  are the phasor representations of the
incident and scattered electric field intensities, respectively. The superscript
∗  denotes the complex conjugate. σ has the units of area and is usually
expressed in square meters.

The RCS of some common perfectly conducting scatterers can easily be
calculated from geometrical optics ( σ πρ ρ= 1 2  where ρ1 and ρ2 are the radii
of curvature) and have been tabulated (see for example [2]).

For most objects, radar cross section is a three-dimensional map of
scattering contributions located on the object and which vary as a function
of frequency, aspect angles (azimuth φ and elevation θ) and polarization [7].
The scattering matrix describes the scattering behaviour of the target as a
function of polarization, as it contains four RCS values (VV, VH, HV and
HH; the first letter denotes the transmission polarization, the second letter is
the polarization at receive) from which the RCS can be derived at any
polarization:
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Radar cross section is the only factor in the radar equation that is within
control of the stealth design engineer, hence its importance:
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4 42 2π

σ
π

(1)

where
Pr is the received power,
Pt is the transmitted power,
Gt is the antenna gain on transmit,
R is the distance between the target and the radar (i.e. the range),
σ is the radar cross section and
Ar is the effective antenna aperture on receive.

Of course, active electronic countermeasures (ECM) can further reduce the
probability of radar detection. However, ECM is not regarded as a stealth
technique.
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1.1.3 Why Reduce RCS?

There are several reasons for reducing the RCS of any target [7]:
– Prevent, or at least delay or deteriorate enemy radar detection,
– Force the enemy radar to increase its transmitting power, thus increasing

its detection range and vulnerability,
– Prevent correct target classification through the analysis of “hot spots”,
– Induce the enemy to underestimate target dimensions,
– Reduce the jamming power necessary to protect the target,
– Increase the effectiveness of chaff,
– Simplify the construction and deployment of decoys.

In conclusion, all the above considerations have the common purpose of
increasing target survivability. However, as has been mentioned previously,
RCS reducing techniques can also be employed to prevent one’s own radar
from receiving unwanted echoes from nearby “friendly” objects.

Quite often the direction of radiation will result in head-on illumination of the
target [1]. As can be deduced from the table below ([1], [2] and [8]), the aim
is to make a fighter plane’s head-on RCS approach that of a bird. However
it is obvious that consideration must also be given to other aspects,
including those from below or to one side when ground- or space- based
radar is the threat. In this context it should also be noted that a different
approach is likely to be necessary when the threat is a bi-static, as opposed
to a mono-static radar [1].

Table 1.1: Typical head-on RCS values at microwave frequencies
Object σ (m2)

Pickup truck 200
Automobile 100
Jumbo jet airliner 100
B-52 100
Tank 50
Large bomber or commercial jet 40
Cabin cruiser boat 10
Large fighter aircraft 6
Small fighter aircraft or
four-passenger jet

2

Adult male 1
Cruise missile 0.80
B-1B 0.75
Conventional winged missile 0.50
B-2 0.10
F-117A 0.025
Bird 0.010
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1.1.4 Scattering Mechanisms

The electromagnetic waves that impinge upon the target are scattered by a
variety of mechanisms [1]:
– Specular: Specular wave scattering is essentially a reflection of the

incoming wave. The main contribution arises when the Poynting vector of
the incoming wave vector is perpendicular to the local surface.

– Diffraction: Diffraction occurs when there is a discontinuity in the target
geometry or a discontinuity in the electromagnetic material properties of
the object.

– Diffracted surface waves: A surface wave (which belongs to the group of
traveling waves; see also Section 3.4.8) may result when the incoming
wave is more or less aligned along the length of a long thin coated body.
The scattering arises when the surface wave encounters surface
discontinuities, the end of the body or changes in the electromagnetic
properties of the surface of the body. (See also Fig. 1.6.)

– Radiation from creeping waves: When the surface which supports a
surface wave makes a gentle bend in the longitudinal plane of the
surface wave, the surface wave will convert into an attenuated creeping
wave that continues to follow the surface and space waves that radiate
away from the surface, also called surface diffracted waves (Fig. 1.3) [9].

Figure 1.3: Radiation from creeping waves

All scattering mechanisms have one thing in common: the scattered waves
are needed in addition to the incoming wave to satisfy the boundary
conditions at the object.
The dependence of RCS upon wavelength can be categorized into three
regimes (a is a major dimension of the target) [1]:
– The Rayleigh regime where λ π≥ 2 a : In this regime σ varies smoothly

with variation of λ. Moreover, σ~V2λ-4 where V is the volume of the body,
– The resonant regime where rapid changes of σ are likely to occur,
– The optical regime where λ π≤ 2 a: Here σ varies smoothly with λ and

may tend to a definitive value for λ π<< 2 a .

Surface Wave

Creeping Wave
Space Waves

(Radiation)
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1.1.5  Where to Reduce RCS

At radar frequencies of practical interest, the wavelength is often much
smaller than the target’s typical dimensions, and the electromagnetic
scattering is practically a local phenomenon (i.e. optical regime). Besides
particular resonance or multiple reflection effects, the scattering of each
single reflecting element of a complex structure is not affected by the
presence of the rest of the structure (except for masking effects) [7]. Hence,
a radar echo can be seen as the superimposition of several echoes, each
with a different amplitude and phase

( )σ σ ϕ=
=

∑ n
j

n

N

e n
2

1
.

An average RCS value can be computed by assuming that phases are
random uniform variables (this assumption is true for short wavelengths)

σ σ=
=

∑ n
n

N

1
. (2)

As can be seen from the radar equation (1), a reduction in σ by an order of
magnitude only reduces the detection range by 44%. A very large reduction
in σ is therefore essential to have a significant effect [1]. In view of (2), it is
very important to work first on the main scattering contributions (“hot spots”)
of a target, because their reduction has the maximum effect on the overall
RCS [7]. An overview of what contributes to the RCS of a typical fighter
aircraft is given in Figure 1.5.

Only RCS contributions that can be accompanied by surface wave propa-
gation (12 to 15 in Fig. 1.5) are dealt with in this text. These contributions
are in general small compared with other contributions. However, in order to
achieve RCS values that are as small as that of a bird, these smaller
contributions need to be reduced as well. The methods and techniques
presented in this text are intended to help achieve this. They are also
helpful with the new, taxpayer-friendly trend of retrofitting or redesigning
existing vehicles which were originally not designed in stealth technology.

(a) (b)
Figure 1.4a: The F-15, a conventional fighter plane
Figure 1.4b: The F-22, a stealth redesign of the F-15 with new low-
observable jet intakes, shielded nozzles, cant rudders and internal weapon
bays
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Figure 1.5: Contributions to the radar cross section of a fighter jet [1], [9]

Large scattering contributions (mainly due to reflection) are:
1) Air intake cavity (only for head-on illumination),
2) Antenna behind radome, if transparent to illuminating radar,
3) Canopy and cockpit cavity,
4) Dihedral 90° corner reflector at tail junction (only for side illumination),
5) Exhaust cavity (when viewed from rear (e.g. like in a missile attack)),
6)  Drop tank,
Not shown: Glint from flat, slab sided fuselage (from normal to its side).

Scattering contributions that could be large, but not necessarily are:
7) Leading wing edge, especially if unswept,
8) Glint from vertical and horizontal tails in isolation,
9) Seeker,
Not shown: Glint from propeller and rotor blades.

Smaller, but nevertheless significant scattering contributions are:
10) Weapon hard point,
11) Gun muzzle and other local surface protuberances,
12) Creeping wave along the fuselage,
13) Axial surface wave along coated missile,
14) Surface wave along trailing wing edge (only with side illumination) [10],
15)  Scattering at trailing wing edge and control surface gaps,
Not shown: Scattering at edges of undercarriage fairing,
Not shown: Local air intakes for cooling or air conditioning.

Contributions 12 to 15 can be accompanied by surface wave propagation
effects if the surfaces are coated.
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1.1.6 Techniques for Reducing RCS

There are essentially four techniques for reducing RCS:
– By shaping and masking,
– By treating the surface of the target with radar absorbing materials

(RAM),
– By using local lumped impedances on the surface of the target,
– By employing electromagnetic soft or hard surfaces.

All four methods involve a change in the boundary conditions at the object:
either a change in the location of the boundary or a change in the type of
the boundary or both. The fourth technique is a relatively new technique [5]
and [6]. Especially the potential benefits of electromagnetic soft boundaries
for reducing RCS contributions from edge diffracted waves (13, 14 and 15
in Figure 1.5) are shown for the first time in this text (see Chapter 5).

Shaping and Masking

By using proper shapes, it is possible to reduce RCS for particular aspects,
at the expense of other aspects, so that the target has minimum RCS in the
most probable direction of radar illumination [7].

There are two distinctly different approaches to establishing the overall
shape of a stealth object [1]:
– By adopting a compact, smooth blended external geometry. This

technique is exemplified by the Northrop B-2 (Fig. 1.8 and 1.9),
– By employing a faceted configuration, using flat surfaces arranged to

minimize normal reflections back toward the illuminating radar and, it is
hoped, eliminate glint. The Lockheed-Martin F-117A (Fig. 1.1) is based
on this design concept.

In this context it should also be noted that a flat plate focuses its back-
scattering on a very narrow angular sector, with a high RCS value.
A sphere, by contrast, has a low RCS value which is uniform at all angles.
Thus, on a limited angular sector around the specular direction, spheres
and cylinders give the lowest RCS values. If otherwise, RCS must be kept
low on a wide angular sector, then it is better to use very narrow-beam
shapes such as the flat plate, correctly aimed in order to avoid the specular
flash [7].

The design of a stealth aircraft usually results in a flying-wing shape (Fig.
1.1 and 1.8). With such a shape, most contributions of Figure 1.5 are
absent or significantly reduced. For more tips on designing stealth aircraft,
refer to [1] and [7].
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Radar Absorbing Materials

RAM may function in one of two distinctly different ways [1]:
– By admitting the signal and then attenuating its intensity. This type is

particularly suited for use against a wide range of radar frequencies, and
is sometimes referred to as broadband RAM. However, this type RAM
has the disadvantage of being difficult to manufacture and is heavy and
expensive [7]. Surface wave absorbing materials work in very much the
same way but are polarization dependent,

– By generating internal reflections which interfere with the waves reflected
from the outer surface. This type of RAM is called resonant RAM
because it is only effective at a number of discrete frequencies.

Lumped Impedances

It is not inconceivable that for example the wings of an aircraft could be
resonant at the low frequency of an over-the-horizon early warning radar. In
such a case, the wings could be detuned and hence the RCS significantly
reduced by inserting an inductance or capacitance at some point in the
wings.

Electromagnetic Soft and Hard Surfaces

(See [5], [6] and Chapter 5 in this text for more information.)
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1.2 Reducing the RCS Contribution of Edge Diffracted Waves

An illuminating radar beam parallel to an object’s surface encountering a
surface discontinuity generates edge diffracted waves in order to satisfy the
boundary conditions at the discontinuity (Fig. 1.6).

Figure 1.6: Edge diffracted waves at a surface discontinuity

The back-scattered edge diffracted waves are in phase if the discontinuity
lies on a straight line perpendicular to the illumination direction (Fig. 1.7a).
This leads to a strong RCS contribution [9].

For an ordinary aircraft the problem arises at the trailing edges of wings, at
the gaps between wings and control surfaces (ailerons, flaps and rudders),
at the edges of cargo doors, service hatches and undercarriage fairing and
at the end of wing-mounted missiles (see Fig. 1.5).

There are three ways to overcome this problem:
– By indenting the edge discontinuity or
– By converting the illuminating space wave to surface waves whose

intensity is significantly reduced before reaching the surface
discontinuity. This can be achieved by employing isotropic surface wave
absorbing materials backed by a metal surface,

– By replacing the surface by an electromagnetic soft surface.

The first method is depicted in Figure 1.7b where the approximate contour
of a stealth air plane is shown (see also Fig. 1.8). Due to the indented
shape of the rear edge, the edge diffracted waves going back to the radar
are not in phase. Moreover, when this plane turns around its vertical axis
(or the mono-static radar movers around this target), only two directions
vulnerable for detection exist in a 180° sector [9]. This technique is however
not particularly effective in the case of bi-static radars.

Wing (Upper Part)

Space Wave

Edge
Diffracted

Waves

Aileron
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(a) (b)
Figure 1.7a: Edge diffraction from the trailing edge of a straight wing
Figure 1.7b: Edge diffraction from the trailing edge of an indented wing

Figure 1.8: The B-2 stealth bomber plane. A flying-wing design and an
indented rear edge result in an extremely low RCS value.

Edge indentation can be found at many locations along the fuselage of a
stealth aircraft, as is exemplified by Figures 1.8 to 1.12. However, it is not
always possible to employ this technique due to aerodynamic require-
ments. This is especially true for the gaps between wings and control
surfaces and for ordinary aircraft being retrofitted. In such cases, one has
to resort to one of the other two methods which are discussed in Chapter 5.

Figure 1.9: The indented payload doors of a B-2
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Figure 1.10: A close-up at the indented hatch of one of the F-117A’s
weapon bays

Figure 1.11: Indented surface discontinuities on the F-22’s fuselage

Figure 1.12: The F-22 seen from aside.
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1.3 Outline of this Text

Chapter 2 gives a review of Hertz potential theory. The convenience of
expressing source free electromagnetic fields in terms of Hertz potentials is
clearly demonstrated.

An unambiguous definition of plane surface waves is given in Chapter 3,
followed by a rigorous investigation into the propagation mechanisms of
plane surface waves along various planar and isotropic multi-layered
surface wave absorber configurations. Dispersion equations are derived by
treating these structures as boundary-value problems and solving them
using Hertz potentials. Surface waves are compared with other kinds of
traveling waves and the requirements for surface wave propagation are
discussed. For a given isotropic layer structure, the propagation of plane
surface waves is found to be strongly polarization dependent.

Axial surface waves are the type surface waves that can propagate along a
coated metal cylinder (e.g. a missile (see Fig. 1.5)). They also very much
resemble the waves that might propagate along the trailing edge of a wing
(see also Fig. 1.5 and [10]). The dispersion equation of these axial surface
waves is derived in Chapter 4.

Chapter 5 starts off by explaining the many restrictions of employing
isotropic surface wave absorbing materials for reducing the back-scattering
of edge diffracted waves. Once more is stressed that the effectiveness of
isotropic surface wave absorbers strongly depends upon the polarization of
the illuminating radar beam. An alternative technique which does not suffer
from this problem is suggested for eliminating edge diffracted waves in the
radar direction. This new technique consists in replacing the scattering
surface by an electromagnetic soft surface. Ways to produce such a soft
surface are also discussed.

Although soft boundaries form an electromagnetic superior solution for
reducing the RCS resulting from edge diffracted waves, surface wave
absorbers may still find many useful applications, even within RCS
management. From this perspective it is obvious that there is a lot interest
in determining the quality and efficacy of commercially available surface
wave absorbers. Chapter 6 gives a brief historical overview of surface wave
measurement techniques and their limitations. It appears that none of the
existing techniques can be applied to measure the propagation
characteristics of plane surface waves in a convenient way. However, this
work resulted in the development of a new measuring apparatus, based on
a partially filled rectangular waveguide, for determining the attenuation
constant and phase constant of plane surface waves propagating along
metal-backed surface wave absorbing materials. Measurements are
presented which validate this new measuring method.

Finally, the conclusions of this work are drawn in Chapter 7 and
suggestions are made for further work.
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1.4 Conclusions

Edge diffracted waves resulting from surface discontinuities contribute
significantly to the radar cross section of an object. Although this problem
could be alleviated by indenting the edge discontinuity, this is not always
possible due to other mission requirements.

However, the back-scatter from edge diffracted waves may also be reduced
by converting the incoming radar waves into surface waves whose intensity
is significantly reduced before reaching the surface discontinuity. This can
be achieved by employing surface wave absorbing materials.
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2 Hertz Potentials

2.1 Introduction

A general feature of classical electrodynamics is the fact that an
electromagnetic field must be a solution of Maxwell's equations. Therefore
many theoretical considerations on the structure of Maxwell's equations
exist. The analysis of an electromagnetic field is often facilitated by the use
of auxiliary functions known as potential functions (scalar, vectorial,
tensorial) [1, p.23]. These are solutions of partial differential equations. The
partial differential equations are such, that solving them for the potential
functions is equivalent to the more tedious task of solving Maxwell's
equations directly [2].

The most elegant approach to this is the field representation in terms of
Green's tensors. However, this treatment has the fundamental
disadvantage that tensor differential equations have to be solved. It is only
for special kinds of media that Green's tensors can be reduced to scalar
Green's functions [2].

It was shown by Hertz that an arbitrary electromagnetic field in a (source
free) homogeneous linear isotropic medium can be defined in terms of a
single vector potential 

�

∏  [1, p.28]. The Hertz vector potential notation is an
efficient mathematical formalism for solving electromagnetic problems. As
will be shown, Hertz vector potential can be reduced to a set of two scalar
potentials, which are solutions of Helmholtz’s equations, for any orthogonal
curvilinear coordinate system. These solutions are independent only in the
case of an isotropic medium [2]. Note that at present the Hertz potential
notation has been extended in order to take into account sources contained
in the medium [1, pp. 30-32 & pp. 430-431]. However, this can not be done
in a straightforward manner. The current and charge densities first need to
be expressed in terms of an electric polarization vector 

�

P  using the

formulas: 
�

�

J P
t

= ∂
∂

 and ρ = −∇ ⋅
� �

P .

A lot of present day textbooks on the subject of electromagnetism rely
heavily on the magnetic vector potential 

�

A  and the scalar potential φ , also
often called the mixed potential method. The main advantage of this
method is the fact that the two Helmholtz’s equations that result from it (one
vectorial and one scalar), directly take into account any current or charge
sources lying in the medium. This is in contrast with the Hertz vector
potential method where, as has been explained in the previous paragraph,
the scalar potentials are more closely connected to the field intensities 

�

E
and 

�

H.
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The magnetic vector potential 
�

A  and the scalar potential φ  are related to

the Hertz vector potential as follows [1, pp. 28-29]: 
�

�

A
t

= ∏µε ∂
∂

 and

φ = −∇ ⋅∏
� �

, provided that 
�

A  is defined by 
� � �

B A= ∇ ×  and not 
� � �

H A= ∇ × .
(The latter definition is more common in East European countries.)

The big strength of the Hertz vector potential method lies with the fact that
there is no need to check whether the solutions of the two scalar partial
differential equations are solutions of the posed problem. This is clearly not
the case with the mixed potential method [3, p. 679]. For problems situated
in source free media, this property of the Hertz vector potential method far
outweighs the advantages of any other method. This also explains why, in
this text, the Hertz vector potential method is preferred over the mixed
potential method.

In recent years, a lot of research effort went into the development of
potential formulations for anisotropic, gyrotropic, chiral and spatially
inhomogeneous media [2]. For a detailed discussion on scalar Hertz
potentials for bigyrotropic media see [4].
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2.2 Hertz's Wave Equation for Source Free Homogeneous
Linear Isotropic Media

Assuming ej tω  time dependence, Hertz's wave equation for a source free
homogeneous linear isotropic medium, independent of the coordinate
system, is [3, p. 729]
∇ ∏+ ∏ =2 2 0

� �

k (1)
where ( )∇ ≡ ∇ ∇ ⋅ − ∇ × ∇ ×2 �

� �

�

� �

�

v v v    (
�

v  is any vector)   [1, p. 25], [3, p. 95]

and ( )k j j j2 2= − + = −ωµ σ ωε εµω ωµσ .
(k is the complex wave number of the surrounding medium.)

Hertz's wave equation for source free homogeneous linear isotropic media
(1) has two types of independent solutions: 

�

∏ e  and 
�

∏m .

These result in independent sets of E-type waves
( )

� � �

H j e= + ∇ × ∏σ ωε , (2a)

( )� � � � �

E k e e= ∏ +∇ ∇ ⋅∏2 , (2b)

and H-type waves, respectively [3, p. 729]
� � �

E j m= − ∇ × ∏ωµ , (3a)

( )� � � � �

H k m m= ∏ +∇ ∇ ⋅∏2 . (3b)

Note that throughout this text, permittivity ε will be treated as a complex quantity with two
distinct loss contributions [5]

ε ε ε σ
ω

= ′ − ′′ −j j

where − ′′jε  is the loss contribution due to molecular relaxation

and − j σ
ω

 is the conduction loss contribution. (The conductivity σ is measured at DC.)

However, in practice it is not always possible to make this distinction. This is often the case
with metals and good dielectrics. In those cases all losses can be treated as though being
entirely due to conduction or molecular relaxation, respectively.

Above relations follow from

( )
� � � � � �

∇ × = + = ′ − ′′ +H j D J j j E Eω ω ε ε σ .

The loss tangent of a dielectric medium is defined by

tanδ ωε σ
ωε

≡ ′′ +
′

.

Permeability µ has only one loss contribution due to hysteresis: µ µ µ= ′ − ′′j .
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2.3 Hertz's Wave Equation in Orthogonal Curvilinear
Coordinate Systems with Two Arbitrary Scale Factors

Consider a right-hand orthogonal curvilinear coordinate system with
curvilinear coordinates ( )u u u1 2 3, , . Scale factor h1 equals one and scale
factors h2 and h3 can be chosen arbitrary.

(A detailed explanation of what curvilinear coordinates and scale factors are, can be found
in [1, pp. 38-59] and [6, pp. 124-130], together with definitions of gradient, divergence, curl
and Laplacian for such coordinate systems.)

Hertz's vector wave equation for source free homogeneous linear isotropic
media (1) can be reduced to a scalar wave equation [3, pp. 729-730] by
making use of the definitions given in [1, pp. 49-50]

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

2

1
2

2 3 2

3

2 2 2 3 3

2

3 3

21 1 0∏ + ∏





 +

∏





 + ∏ =

u h h u
h
h u h h u

h
h u

k (4)

with ( )
�

�

∏ = ∏ u u u e1 2 3 1, , . (5)
�

e1 is in the unit vector in the u1-direction.

The field components of the E-type waves are obtained by introducing (5)
into (2a+b)

E k
ue

e
1

2
2

1
2= ∏ +
∏∂
∂

;   H1 0= ,

E
h u u

e
2

2

2

1 2

1=
∏∂

∂ ∂
;   

( )
H

j
h u

e
2

3 3

=
+ ∏σ ωε ∂

∂
, (6)

E
h u u

e
3

3

2

1 3

1=
∏∂

∂ ∂
;   

( )
H

j
h u

e
3

2 2

= −
+ ∏σ ωε ∂

∂
.

The field components of the H-type waves are obtained by introducing (5)
into (3a+b)

H k
um

m
1

2
2

1
2= ∏ +
∏∂
∂

;   E1 0= ,

H
h u u

m
2

2

2

1 2

1=
∏∂

∂ ∂
;   E j

h u
m

2
3 3

= −
∏ωµ ∂
∂

, (7)

H
h u u

m
3

3

2

1 3

1=
∏∂

∂ ∂
;   E j

h u
m

3
2 2

=
∏ωµ ∂
∂

.

As can be seen from (7) and (8), E-type waves have no H-component in the
u1-direction, whereas H-type waves have no E-component in that direction.
By choosing appropriate values for h2 and h3, expressions for the field
components in Cartesian, cylindrical (including parabolic and elliptic) and
even spherical coordinate systems can be obtained.
The more general case with three arbitrary scale factors gives rise to an
insoluble set of interdependent equations [1, pp. 50-51].
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2.4 Hertz's Wave Equation in a Cartesian Coordinate System

The three scale factors h1, h2 and h3 all equal one in a right-hand Cartesian
coordinate system ( )u u u1 2 3, , . Hence, Hertz's vector wave equation (4)
simplifies to
∂
∂

∂
∂

∂
∂

2

1
2

2

2
2

2

3
2

2 0∏ + ∏ + ∏ + ∏ =
u u u

k (8)

with ( )
�

�

∏ = ∏ u u u e1 2 3 1, , . (9)
�

e1 is the unit vector in the u1-direction.

Therefore, the field components of the E-type waves are

E k
ue

e
1

2
2

1
2= ∏ +
∏∂
∂

;   H1 0= ,

E
u u

e
2

2

1 2

=
∏∂

∂ ∂
;   ( )H j

u
e

2
3

= +
∏

σ ωε
∂
∂

, (10)

E
u u

e
3

2

1 3

=
∏∂

∂ ∂
;   ( )H j

u
e

3
2

= − +
∏

σ ωε
∂
∂

.

The field components of the H-type waves are

H k
um

m
1

2
2

1
2= ∏ +
∏∂
∂

;   E1 0= ,

H
u u

m
2

2

1 2

=
∏∂

∂ ∂
;   E j

u
m

2
3

= −
∏

ωµ
∂
∂

, (11)

H
u u

m
3

2

1 3

=
∏∂

∂ ∂
;   E j

u
m

3
2

=
∏

ωµ
∂
∂

.
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2.5 Hertz's Wave Equation for a 2D-Uniform Guiding Structure

Propagation along a guiding structure occurs in one direction only. In this
text, the x-axis is chosen to be parallel with the propagation direction.
Therefore, the waves along a uniform guiding structure have only an

( )e j t xxω β− -dependence in that direction. This means that Hertz vector
potentials for two-dimensional uniform guiding structures are of the form
[3, p. 800]

( )
�

�

∏ = −F y z e ej xx, β
1

where 
�

e1 can be either in the x-, y- or z-direction

and phase constant β β β
γ

x x x
xj
j

= ′ − ′′ = .

The propagation of electromagnetic waves is usually characterized in terms of the
propagation constant γ α β= + j , where α is called the attenuation constant.

The formulation for β used in this text, is consistent with the expression for  γ , namely
( )γ β β β β β α= ′ − ′′ = ′′ + ′ ⇒ ′′ ≡j j j .

There exist a large number of 2D-uniform guiding structures, some of the best known
examples are: the parallel wire line, coaxial cable, waveguide, strip line, microstrip line, slot
line and the coplanar line.

Since ∂
∂

β
2

2
2∏ = − ∏

x x , Hertz's scalar wave equation (8) becomes

∂
∂

∂
∂

2

2

2

2
2 0∏ + ∏ + ∏ =

y z
s (12)

where s k jx x
2 2 2 2 2= − = − −β εµω ωµσ β . (13)

Solutions to (12) can readily be found by separation of the variables.
Namely, let ( ) ( )∏ = −Y y Z z e j xxβ . (14)

Substituting (14) into (12) and dividing by (14) gives
1 1 0

2

2

2

2
2

Y
d Y
dy Z

d Z
dz

s+ + = .

Since the last term in the above equation is independent of both y and z,
the first two terms need to be this as well.
Therefore,
1 2

2
2

Y
d Y
dy

sy= − ;   1 2

2
2

Z
d Z
dz

sz= −    and   s s sy z
2 2 2+ = . (15)



21

The first two equations in (15) are linear homogeneous second order
differential equations
d Y
dy

s Yy

2

2
2 0+ = ;   d Z

dz
s Zz

2

2
2 0+ = .

Hence, suitable Hertz potential solutions for two-dimensional uniform
guiding structures are of the form [6, p. 105]

[ ] [ ]∏ = + ⋅ + ⋅+ − + − −c e c e c e c e ejs y js y js z js z j xy y z z x
1 2 3 4

β , or equally,

( ) ( )[ ] ( ) ( )[ ]∏ = + ⋅ + ⋅ −c s y c s y c s z c s z ey y z z
j xx

5 6 7 8cos sin cos sin β .
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2.6 Hertz's Wave Equation in a Circular Cylindrical Coordinate
System

In a cylindrical coordinate system, the scale factors are generally different
from one, except for the scale factor associated with the symmetry axis,
usually called the z-axis. In order to apply expression (4), the scale factor h1
should equal one. Therefore, let u z1 = .

The special case of a right-hand circular cylindrical coordinate system
( )r z, ,φ  gives u z1 = ;   u r2 =   and  u3 = φ . (16)

The differential line element d�  in a circular cylindrical coordinate system
( )r z, ,φ  is [7]

d dr r d dz� = + +2 2 2 2φ .

The scale factors are hence [6, p. 124]

h
z1 1= =∂
∂
� ;   h

r2 1= =∂
∂
�   and  h r3 = =∂

∂φ
� . (17)

Substitute (16) and (17) into (4) to get
∂
∂

∂
∂

∂
∂

∂
∂φ

∂
∂φ

2
21 1 1 0∏ + ∏




+ ∏






 + ∏ =

z r r
r

r r r
k (18)

with ( )
�

�

∏ = ∏ z r ez, ,φ . (19)

Propagation in cylindrical symmetric transmission lines occurs in one
direction only, which is usually along the z-axis. This means that the
expression for the Hertz vector potentials simplifies to

( )
�

�

∏ = −F r e ej z
z

z,φ β .

Since ∂
∂

β
2

2∏ = − ∏
z z , Hertz’s scalar wave equation (18) becomes

1 1 1 02

r r
r

r r r
s∂

∂
∂
∂

∂
∂φ

∂
∂φ

∏




+ ∏






 + ∏ = (20)

where s k jz z
2 2 2 2 2= − = − −β εµω ωµσ β . (21)

Solutions to (20) can readily be found by separation of the variables.
Namely, let ( ) ( )∏ = −R r e j zzΦ φ β . (22)

Substituting (22) into (20) and dividing by (22) results in [3, p. 739]
1 1 1 1 1 02

R r
d
dr

r dR
dr r

d
d r

d
d

s













 +

















 + =

Φ
Φ

φ φ
. (23)
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Multiplying (23) by r2 gives
r
R

d
dr

r dR
dr

d
d

s r




+ + =1 0

2

2
2 2

Φ
Φ
φ

. (24)

Equation (24) can be separated using a separation constant n into
1 2

2
2

Φ
Φd

d
n

φ
= − , (25)

r
R

d
dr

r dR
dr

s r nr





+ =2 2 2 (26)

where s s kr z
2 2 2 2= = − β .

Equation (25) is a linear homogeneous second order differential equation
d
d

n
2

2
2 0Φ Φ

φ
+ = .

Solutions for Φ are of the form [6, p. 105]
Φ = ++ −c e c ejn jn

1 2
φ φ , or equally, (27a)
( ) ( )Φ = +c n c n3 4cos sinφ φ . (27b)

Rewriting equation (26) results in an expression which can be recognized
as Bessel’s equation of order n [6, p. 106]
r
R

d
dr

r dR
dr

s r nr





+ − =2 2 2 0

⇒ + ⋅






 + − =r

R
r d R

dr
dR
dr

s r nr

2

2
2 2 21 0

( )⇒ + + − =r d R
dr

r dR
dr

s r n Rr
2

2

2
2 2 2 0 (28)

with n ≥ 0 .

Solutions to Bessel’s equation of order n (28) are of the form [6, p. 106],
[8, pp. 97-88]

( ) ( )R c J s r c Y s rn r n r= +5 6 , or equally, (29a)

( ) ( )R c H s r c H s rn r n r= +7
1

8
2( ) ( ) . (29b)

These solutions are linearly independent only if n is a positive integer.

At this point, Hertz’s scalar wave equation for circular cylindrical coordinate
systems (20) is solved. It suffices to substitute any form of (27) and (29)
into (22) to obtain the Hertz potential solutions.
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Substituting (16) and (22) into (6) gives the field components of the E-type
waves expressed in terms of a Hertz potential  [3, p.740]
E sz r e= ∏2 ;   Hz = 0 ,

E j
rr z

e= −
∏

β
∂
∂

;   
( )

H
j

rr
e=

+ ∏σ ωε ∂
∂φ

, (30)

E j
r
z e

φ
β ∂

∂φ
= −

∏ ;   ( )H j
r

e
φ σ ωε

∂
∂

= − +
∏ .

Likewise, substitute (16) and (22) into (7) to obtain the field components of
the H-type waves
H sz r m= ∏2 ;   Ez = 0,

H j
rr z

m= −
∏

β
∂
∂

;   E j
rr

m= −
∏ωµ ∂
∂φ

, (31)

H j
r
z m

φ
β ∂

∂φ
= −

∏ ;   E j
r

m
φ ωµ

∂
∂

=
∏ .
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2.7 Conclusions

Chapter 2 gave a review of Hertz potential theory. The convenience of
expressing source free electromagnetic fields in terms of Hertz potentials
was clearly demonstrated. The theory is kept as general as possible,
making it useful as a reference while solving many other electromagnetic
problems.
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3 Plane Surface Waves along Plane Layers of Isotropic Media

3.1 Definition

A plane surface wave is defined as a plane wave that propagates along a
plane interface of two different media without radiation [1, p.5].
Note that radiation in this context is construed as being energy converted
from the surface wave field to some other field form.

Plane surface waves are inhomogeneous waves because the field is not
constant along surfaces of constant phase. In fact, in the case of a surface
wave the field decays exponentially over the wavefront with increase of
distance from the surface.

There are E-type and H-type surface waves. The field of an E-type plane
surface wave is depicted in Figure 3.1. For an H-type wave the E- and H-
fields are interchanged and one of the fields is reversed in sign. Explicit
equations for the fields of plane surface waves along various structures will
be derived rigorously later in this chapter.

x

z
y

Figure 3.1: The field of an E-type plane surface wave

�

E

�

H

Medium 2

Medium 1
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3.2 Plane Surface Waves and the Brewster Angle Phenomenon

There are many ways to explain the mechanism of surface waves. In the
mid-fifties Barlow et al. introduced the concept of surface impedance for
this purpose [1, pp. 15-17], [2], which will be explained in a later section.
Earlier work by Zenneck (1907) associated plane surface waves with the
Brewster angle phenomenon [1, pp. 29-33], [3, p. 697-701]. For this reason
plane surface waves are sometimes also called Zenneck waves. Due to the
many prevailing misconceptions, the relation between plane surface waves
and the Brewster angle will receive some further attention here.

The Brewster angle is the angle of incidence at which a plane wave incident
on a plane material interface is totally transmitted (i.e. without reflection)
from one medium, called medium 2 here, into another medium, called
medium 1. Both media are assumed to be half spaces. In lossless media,
the Brewster angle phenomenon only occurs for perpendicular and parallel
polarized incident plane waves. (The terms “perpendicular” and “parallel”
refer to the orientation of the electric field intensity vector 

�

Ei  of the incident
plane wave with respect to the plane of incidence.) The Brewster angle is
different for the two types of polarization. From Fresnel’s equations [4], it
can be shown that the Brewster angle for perpendicular polarized incident
plane waves is

θ

ε µ
ε µ

µ
µ

B a⊥ =
−

−








sin
1

1

1 2

2 1

2

1

2  and

θ

ε µ
ε µ

ε
ε

B a// sin=
−

−








1

1

2 1

1 2

2

1

2

for parallel polarized incident plane waves.

Above equations result in a complex value for the Brewster angle:
– if, for perpendicular polarization, µ µ2 1> ,
– or if, for parallel polarization, ε ε2 1> ,
– or if at least one of the two media has losses.

The physical meaning of a complex angle of incidence is an inhomogeneous plane
wave (which in fact very much resembles a surface wave) incident at that angle [1,
p. 30], [3, p. 717], [5]. When the Brewster angle is complex, the angle for which
the magnitude of the reflection coefficient is a minimum, is called the pseudo-
Brewster angle [1, p. 31]. The Brewster angle is also sometimes called the
polarizing angle since a wave with both perpendicular and parallel components
and which is incident at the Brewster angle will produce a reflected wave with only
a perpendicular or parallel component [6, p. 617]. To summarize, the only
connection between surface waves and the Brewster angle lies in the fact that the
inhomogeneous wave required by a complex Brewster angle resembles a surface
wave.
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3.3 Plane Surface Waves, Total Reflection and Leaky Waves

An idea of what the different fields along a material interface may look like,
can be obtained by employing ray-optics theory once again. The existence
of propagating plane surface waves along a coated perfectly conducting
plane, for example, can be explained with the help of the total reflection
phenomenon as shown in Figure 3.2.

y
x

z

Figure 3.2: A ray-optics explanation for the propagation of plane surface
waves along a coated perfectly conducting plane

Total reflection only occurs when a wave from medium 1 impinges upon
medium 2 at an angle of incidence θ1i  equal to or exceeding the critical
angle θc  and then only if medium 1 is more “dense” than medium 2 (k1>k2).

An expression for the critical angle as a function of k1 and k2 can be
obtained as follows. The relation between the angles of reflection and
refraction is given by Snell’s law ( ) ( )k kt i2 2 1 1⋅ = ⋅sin sinθ θ

( ) ( )⇒ =sin sinθ θ2
1

2
1t i

k
k

.

There will be no refracted wave if ( )sin θ2t  is greater than one or

equivalently, if ( ) ( )sin sinθ θ1
2

1
i c

k
k

> = .

Hence, θc a k
k

=






sin 2

1

.

σ = +∞

θ θ1i c>

θ 2t

k k1 2>

k 2

Medium 1

Medium 2
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As suggested in Figure 3.2, total reflection can be accompanied by a
surface wave propagating in medium 1, parallel with the material interface.
What is not shown, is the fact that a surface wave field most of the times
also extends into medium 2. This will be proven in the next section. Note
that a surface wave can exist along a coated perfectly conducting plane
only if the coating (medium 1) is more dense than the upper half space
(medium 2) (k1>k2). If this is not the case or if the angle of incidence θ1i  is
smaller than the critical angle θc , part of the wave in medium 1 will be
transmitted into medium 2 with each partial reflection. Therefore, the field
will quickly attenuate in the x-direction. The resulting inhomogeneous plane
wave is called a leaky wave and propagates away from the interface (Fig.
3.3b).

Figure 3.3: (a) A surface wave, (b) a leaky wave (Medium 2 is assumed to
be loss free in this figure.)

Note that 
�

α 2  is perpendicular to 
�

β2  only if medium 2 is loss free
(Im(k2) = 0). This will be shown now.

( ) ( )k k k j jx z x x z z2
2

2
2

2
2

2 2
2

2 2
2= + = − + −β α β α

( ) ( )⇒ = + − + − +k jx z x z x x z z2
2

2
2

2
2

2
2

2
2

2 2 2 22β β α α α β α β .
Only and only if Im(k2) = 0  ⇒ + =α β α β2 2 2 2 0x x z z

⇒ ⋅ = ⇒ ⊥
�

�

�

�

α β α β2 2 2 20 .

For the sake of simplicity, 
�

α 2  will always be drawn for the case where
medium 2 is loss free, i.e. perpendicular to 

�

β2 . However, the theory
developed in this text equally applies for lossy upper media.

Leaky waves violate the radiation condition since they only may exist if
power is delivered to medium 1 from outside, in a direction towards the
material interface with medium 2. This can be achieved by replacing the
perfectly conducting plane in Figure 3.2 by the outer wall of a slotted
waveguide. It also important to  know that a leaky wave can not be exited
by a plane wave incident from medium 2. In such a case, the result will be a
standing wave in medium 2.

�

α 2

�

α 2

�

β 2

�

β 2

x

z

(b)(a)
Equiphase Planes

Equiamplitude Planes

Medium 2

Medium 1 Medium 1

Medium 2
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3.4 Plane Surface Waves along a Coated, Electric Perfectly
Conducting Plane

3.4.1 Introduction

In the previous section the existence of surface waves was shown by
making use of ray-optics theory, which is merely an approximate theoretical
model. A rigorous approach consists of treating the layer structure as a
boundary-value problem and solving it using Hertz potentials. A first
analysis deals with the propagation of plane surface waves along the
interface of a homogeneous linear isotropic half space with a homogeneous
linear isotropic layer of finite height h that is supported by an electric
perfectly conducting plane (Fig. 3.4). The solution of the more general
three-layer structure with arbitrary material constants will be presented later
in this chapter. The special case of an electric perfectly conducting
substrate is presented first because it more readily provides the reader with
a number of basic insights. It is important to note that the structures in the
following sections can be solved both for forward propagating surface
waves and leaky waves. For surface wave propagation it is necessary that
k1 > k2. For leaky waves, k1 may be smaller than k2. Leaky waves violate
the radiation condition and are therefore of little practical interest to RCS
management.

 

y
x

z

Figure 3.4: A coated, electric perfectly conducting plane; it is assumed that
all media are homogeneous, linear and isotropic.

ε µ σ2 2 2, ,

ε µ σ1 1 1, ,

σ = ∞
z = 0

z = h
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It is obvious that the Cartesian coordinate system (Section 2.4) is best
suited for the analysis of plane waves. Assuming plane wave propagation in
the x-direction, the structure of Figure 3.4 can be treated as a special case
of a 2D-uniform guiding structure (see Section 2.5). Here however, none of
the field components can have a y-dependence due to the fact that both
media are infinite in the y-direction. Hence, the Hertz vector potential 

�

∏  will
have no y-dependence. Note that a field vector can still have components
in the y-direction. For reasons that will be explained later, 

�

∏  needs to be
chosen in the z-direction.

A general expression for a Hertz vector potential having above-mentioned
properties is

( )
�

�

∏ = ∏ −z e ej x
z

xβ . (1)

In order to be able to apply (2.10) and (2.11), the relation between the
curvilinear coordinates and the Cartesian coordinates must be as follows
u z1 = ;   u x2 =   and  u y3 = .
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Substituting (1) into (2.10) results in general expressions for the field
components of  E-type waves within a medium

E k
zz e

e= ∏ +
∏2

2

2

∂
∂

;   Hz = 0 ,

E j
zx x

e= −
∏

β
∂

∂
;   ( )H j

yx
e= +

∏
=σ ωε

∂
∂

0 , (2)

E
z yy

e=
∏

=
∂
∂ ∂

2

0 ;   ( )H j jy x e= + ∏β σ ωε .

From (2) it can be seen that E-type plane surface waves are:
1)  longitudinal section magnetic (LSM) waves; the magnetic field intensity

�

H has no component in the direction normal to the material interface
( )Hz = 0  and

2)  transversal magnetic (TM) waves; the magnetic field intensity 
�

H has no
component in the propagation direction ( )Hx = 0 .

Substituting (1) into (2.11) leads to general expressions for the field
components of  H-type waves within a medium

H k
zz m

m= ∏ +
∏2

2

2

∂
∂

;   Ez = 0,

H j
zx x

m= −
∏

β
∂

∂
;   E j

yx
m= −

∏
=ωµ

∂
∂

0 , (3)

H
z yy

m=
∏

=
∂
∂ ∂

2

0 ;   Ey x m= ∏β ωµ .

It can be concluded from (3) that H-type plane surface waves are:
1)  longitudinal section electric (LSE) waves; the electric field intensity 

�

E
has no component in the direction normal to the material interface
( )Ez = 0  and

2)  transversal electric (TE) waves; the electric field intensity 
�

E  has no
component in the propagation direction ( )Ex = 0 .
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3.4.2 E-Type Plane Surface Waves along a Coated, Electric Perfectly
Conducting Plane

A suitable Hertz function for medium 1 that satisfies the boundary condition
E at zx = =0 0
is ( )∏ = −

1 1 1A s z ez
j xxcos β . (4)

The factor ( )cos s zz1  may be interpreted as a standing wave in the z-
direction.

Introducing (4) into (2) results in
( ) ( )E A k s s z ez z z

j xx
1 1 1

2
1

2
1= − −cos β , (5a)

( )E j A s s z ex x z z
j xx

1 1 1 1= −β βsin , (5b)
Ey1 = 0 , (5c)
Hz1 0= , (5d)
Hx1 0= , (5e)

( ) ( )H j j A s z ey x z
j xx

1 1 1 1 1= + −β σ ωε βcos . (5f)

Recalling (2.13)
s k s kz x z x1

2
1
2 2

1 1
2 2= − ⇒ = + −β β . (6)

It is only for a matter of convenience that sz1 is chosen to equal the positive
square root. Choosing the negative square root would have no effect on the
results.

A suitable Hertz function for medium 2 that satisfies the boundary condition
� � �

E H when z= = → +∞0
is ( )∏ = − − −

2 2
2A e ejs z h j xz xβ . (7)

The factor ( )e js z hz− −2  may be interpreted as a wave propagating in the
positive z-direction with phase constant s s jsz z z2 2 2= ′ − ′′ . Contrary to (6), the
sign of sz2 is of importance here because sz2 belongs to the argument of an
exponential function and therefore determines whether the solutions will be
forward propagating surface waves or leaky waves. For surface waves,

′′ > ⇒ <s sz z2 20 0Im( ) , which corresponds to a decaying field in the positive
z-direction. If on the other hand Im( )sz2 0> , the wave is a leaky wave. In
that case the radiation condition is violated because the field in medium 2
increases exponentially away from the interface.
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The appropriate sign for sz2 can easily be found when both materials are
lossless. k2 and βx are real numbers then. Moreover, all plane surface
waves and leaky waves will be slow waves (βx > k2) as is the case for all
inhomogeneous waves propagating in loss free media (see Appendix A).

For surface waves in loss free media, jsz2 must be real and positive,
hence js s kz z x2 2

2 2
2
2= + − = + −β

⇒ = − − = + −s j k kz x x2
2

2
2

2
2 2β β  (see also Appendix B),

whereas for leaky waves in loss free media
s k js j k kz x z x x2 2

2 2
2 2

2 2 2
2
2= − − ⇒ = − − = − −β β β .

However, things are more complicated when at least one of both media
contains losses. Surface waves and leaky waves no longer need to be slow
waves. The many possibilities for the value of sz2 will be discussed now for
the case k2 = k0.

Thus, ( )s k k j k jz x x x x x x x0
2

0
2 2

0
2 2

0
2 2 2 2= − = − ′ − ′′ = − ′ + ′′ + ′ ′′β β β β β β β

⇒ ∠ = ′ ′′
− ′ + ′′







s a

kz
x x

x x
0

2

0
2 2 2

2tan β β
β β

.

Finally, de Moivre’s theorem gives

∠ = ′ ′′
− ′ + ′′







 +s a

k
pz

x x

x x
0

0
2 2 2

1
2

2tan β β
β β

π

where p is either 0 or 1.

Now, let u
k

x x

x x

= ′ ′′
− ′ + ′′









2
0
2 2 2

β β
β β

.

The four possibilities for the location of sz0 in the sz0-plane (Fig. 3.5) are

u p sz> = ⇒ ∠ ∈





⇒0 0 0
40, , π   a leaky wave,

u p sz≥ = ⇒ ∠ ∈ 





⇒0 1 5
40, ,π π   a surface wave,

u p sz≤ = ⇒ ∠ ∈ −





= 





⇒0 0
4

0 7
4

20, , ,π π π   a surface wave,

u p sz< = ⇒ ∠ ∈





⇒0 1 3
40, ,π π   a leaky wave.
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Figure 3.5: The complex sz0-plane

Slow surface waves with moderate losses will most often fall into the third
category. Equation (8a) gives rise to surface wave solutions as long as
u k kx x x x≤ ⇔ − ′ + ′′ ≤ ⇔ ′′ ≤ − ′0 00

2 2 2 2
0
2 2β β β β

where k andx x0, ′ ′′β β  are all positive real numbers.
Even surface wave absorbers will almost always meet this requirement.
This is shown by the numerical examples presented later in this chapter.
However, to remain as general as possible, surface wave solutions are only
obtained by letting ( )Re jsz2 0≥  or

( )js sign k kz x x2
2

2
2 2

2
2= −





−Re β β . (8a)

To obtain leaky wave solutions, let

( )js sign k kz x x2
2

2
2 2

2
2= − −





−Re β β . (8b)

Introducing (7) into (2) leads to
( ) ( )E A k s e ez z

js z h j xz x
2 2 2

2
2

2 2= − − − − β , (9a)
( )E A s e ex x z

js z h j xz x
2 2 2

2= − − − −β β , (9b)
Ey2 0= , (9c)
Hz2 0= , (9d)
Hx2 0= , (9e)

( ) ( )H j j A e ey x
js z h j xz x

2 2 2 2
2= + − − −β σ ωε β . (9f)

∠sz0

sz0

Re(sz0)

Im(sz0)

Surface
Waves

Leaky
Waves



36

The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media and therefore
E E at z hx x1 2= =

( )⇒ =A s s h jA sz z z1 1 1 2 2sin , (10)

as well as H H at z hy y1 2= =

( ) ( ) ( )⇒ + = +σ ωε σ ωε1 1 1 1 2 2 2j A s h j Azcos . (11)

Note that (10) and (11) would have resulted in a set of contradictory
equations, if 

�

∏m e,  were chosen in any direction other than the z-direction.

Dividing (10) by (11) yields

( )s
j

s h js
j

z
z

z1

1 1
1

2

2 2σ ωε σ ωε+
=

+
tan . (12)

Substituting (6) and (8a) into (12) results in the following expression for E-
type surface waves

( ) ( )k
j

h k
sign k k

j
x

x

x x
1
2 2

1 1
1
2 2

2
2
2 2

2
2

2 2

−
+

− =
−





−

+
β

σ ωε
β

β β

σ ωε
tan

Re
. (13)

This equation is transcendental and can therefore only be solved
numerically for β x . It is called a dispersion equation because it expresses
the nonlinear frequency dependence of β x . Both equation (12) and (13) are
expressions for the transverse resonance condition which requires the
same value for the longitudinal wave impedance looking straight down to
the interface (z = h) (14) as for the longitudinal wave impedance looking
straight up [7, p. 12-6]. Hence, there will be no reflection in the equivalent
transmission line of the layer structure (Fig. 3.7).

Looking straight down from medium 2 to the interface, the longitudinal
surface impedance is (for a definition see Section 5.3.2)

Z E
H

E z h
H z h

js
j

j js
js

t

x

y

z z
�

�= − = − =
=

= −
+

=
−

2

2

2

2 2

2

2 2

( )
( ) σ ωε ωε σ

. (14)

The minus sign in (14) originates from the fact that the Poynting vector
� � �

S E Hx y= ×2 2  is in the positive z-direction, whereas Zs�  is the surface
impedance at the interface, looking in the negative z-direction.

The value of the transversal surface impedance is undefined.
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3.4.3 H-Type Plane Surface Waves along a Coated, Electric Perfectly
Conducting Plane

A suitable Hertz function for medium 1 that satisfies the boundary condition
E at zy = =0 0
is ( )∏ = −

1 1 1A s z ez
j xxsin β . (15)

The factor ( )sin s zz1  may be interpreted as a standing wave in the z-
direction.

Introducing (15) into (3) results in
( ) ( )H A k s s z ez z z

j xx
1 1 1

2
1

2
1= − −sin β , (16a)

( )H j A s s z ex x z z
j xx

1 1 1 1= − −β βcos , (16b)
Hy1 0= , (16c)
Ez1 0= , (16d)
Ex1 0= , (16e)

( )E A s z ey x z
j xx

1 1 1 1= −β ωµ βsin . (16f)

Recalling (2.13)
s k s kz x z x1

2
1
2 2

1 1
2 2= − ⇒ = + −β β . (17)

It is only for a matter of convenience that sz1 is chosen to equal the positive
square root. Choosing the negative square root would have no effect on the
results.

A suitable Hertz function for medium 2 that satisfies the boundary condition
� � �

E H when z= = → +∞0
is ( )∏ = − − −

2 2
2A e ejs z h j xz xβ . (18)

For sz2, the same reasoning applies as in the previous section.
Hence, surface wave solutions are obtained by letting Re( )jsz2 0≥  or

( )js sign k kz x x2
2

2
2 2

2
2= −





−Re β β . (19a)

To obtain leaky wave solutions, let

( )js sign k kz x x2
2

2
2 2

2
2= − −





−Re β β . (19b)

Introducing (18) into (3) leads to
( ) ( )H A k s e ez z

js z h j xz x
2 2 2

2
2

2 2= − − − − β , (20a)
( )H A s e ex x z

js z h j xz x
2 2 2

2= − − − −β β , (20b)
Hy2 0= , (20c)
Ez2 0= , (20d)
Ex2 0= , (20e)

( )E A e ey x
js z h j xz x

2 2 2
2= − − −β ωµ β . (20f)
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The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media and therefore
H H at z hx x1 2= =

( )⇒ = −A s s h jA sz z z1 1 1 2 2cos , (21)

as well as E E at z hy y1 2= =

( )⇒ =µ µ1 1 1 2 2A s h Azsin . (22)

Note that (22) and (21) would have resulted in a set of contradictory
equations, if 

�

∏  were chosen in any direction other than the z-direction.

Dividing (22) by (21) and multiplying both sides by jω  yields

( )j
s

s h j
jsz

z
z

ωµ ωµ1

1
1

2

2

tan = − . (23)

Substituting (17) and (19a) into (23) results in the following expression for
H-type surface waves

( ) ( )
j
k

h k j

sign k kx
x

x x

ωµ
β

β ωµ

β β
1

1
2 2 1

2 2 2

2
2
2 2

2
2−

− = −
−





−
tan

Re
. (24)

This dispersion equation is transcendental and can therefore only be solved
numerically for β x . Both equation (23) and (24) are expressions for the
transverse resonance condition which requires the same value for the
transversal wave impedance looking straight down to the interface (z = h)
(25) as for the transversal wave impedance looking straight up [7, p. 12-6].
Hence, there will be no reflection in the equivalent transmission line of the
layer (Fig. 3.7).

Looking straight down from medium 2 to the interface, the transversal
surface impedance is (for a definition see Section 5.3.2)

Z E
H

E z h
H z h s

j
jsst

t y

x z z

= =
=
=

= − = −
�

2

2

2

2

2

2

( )
( )

ωµ ωµ . (25)

In (25), the Poynting vector 
� � �

S E Hy x= ×2 2  is in the negative z-direction, the
same direction used for determining Zst . Hence, no change in sign is
needed as in (14).

The value of the longitudinal surface impedance is undefined.
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3.4.4 High-Frequency Solution for E-Type and H-Type Plane Surface
Waves along a Coated, Electric Perfectly Conducting Plane

The transcendental equations (12) and (23) will now be solved in the limit
case when the frequency f → +∞ . The characteristics of a surface wave
are primarily determined by the quantities β x  and jsz2, the phase constant
in the propagation direction and the decay in the direction perpendicular to
the material interface, respectively.

Applying (2.13) twice gives the relation between sz2 and sz1

s s k k k kz1 z x x
2

2
2

1
2 2

2
2 2

1
2

2
2− = − − + = −β β

⇒ = − +s k k sz1 z
2

1
2

2
2

2
2 . (27)

sz1h appears as the argument of a tangent function in the dispersion
equation of both E-type as H-type surface waves. A tangent function takes
on every positive value in the interval [0,π/2[ and every negative value in
]π/2,π]. Consequently, the first root of dispersion equation (12), which
corresponds to the fundamental E-type mode, occurs at 0 21< <s hz π /
⇒ < <0 21s hz π / . Similarly, the first root of dispersion equation (23),
which corresponds to the fundamental H-type mode, occurs at
π π/ 2 1< <s hz  ⇒ < <π π/ ( ) /2 1h s hz . So for both wave types, sz1 will
always have a finite value.

By contrast, k k1
2

2
2−  will become infinite if f → +∞  because

( )k k r r r r1
2

2
2

1 1 2 2 0 0
2− = −ε µ ε µ ε µ ω .

Knowing the behaviour of sz1 and k k1
2

2
2−  for f → +∞ , equation (27) must

result in s jsz z2
2

2→ −∞ ⇒ → +∞  for f → +∞ . This means that the surface
wave field will not extend  outside the coating layer for extremely high
frequencies. Optical dielectric waveguides work on this principle.

Also, s kz1
2

1
2<<  for f → +∞ , because, as was shown before, sz1 remains

bounded for very high frequencies.
Hence, ( )β x f z f f

k s k2
1
2

1
2

1
2

→+∞ →+∞ →+∞
≡ − = . (28)

Thus at extremely high frequencies a surface wave behaves as a
inhomogeneous plane wave propagating entirely in medium 1. In general,
the wave will remain inhomogeneous because sz1 does not have to be zero
in (5b) and (16b).
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3.4.5 Low-Frequency Solution for E-Type Plane Surface Waves along
Thin Coatings on a Plane PEC

When the frequency is very low, the wave number k1 will be very small.
Since s kz x1 1

2 2= − β , sz1 will also be very small. The tangent function in
equation (12) can be approximated by its argument sz1h if also h is
electrically small, but not necessarily zero.

If this is the case, the dispersion equation for E-type surface waves (12)
reduces to

s h
j

js
j

z

f

z

f

1
2

1 1 0

2

2 2 0
σ ωε σ ωε+

=
+

→ →

. (29)

Raising the power of (29), substituting (27) and rewriting gives

( ) ( ) ( )h j s j k k sz
f

z
f

2
2 2

2
1

2

0
2 2

2
1
2

2
2

1
2

0
σ ωε σ ωε+ = + − −

→ →

( ) ( )
( ) ( )

⇒ =
+ −

+ + +→

→

s
j k k

j h j
z f

f

1
2

0

1 1
2

1
2

2
2

1 1
2 2

2 2
2

0

σ ωε

σ ωε σ ωε
. (30)

Substitute (30) into (6) to get

( ) ( )
( ) ( )

β
σ ωε

σ ωε σ ωε
x f

f

k
j k k

j h j→

→

= −
+ −

+ + +0 1
2 1 1

2
1
2

2
2

1 1
2 2

2 2
2

0

( ) ( )
( ) ( )

⇒ =
+ + +

+ + +→

→

β
σ ωε σ ωε

σ ωε σ ωε
x f

f

h j k j k

j h j0

2
2 2

2
1
2

1 1
2

2
2

1 1
2 2

2 2
2

0

(31)

Moreover, if the coating is extremely thin ( )h → 0 , (31) simplifies to
β x f

h f
k→

→ →
=0

0 2 0
(32)

and jsz2 0→ .

This means that at very low frequencies and when the coating is extremely
thin, the propagating wave will no longer be an inhomogeneous plane
surface wave but a homogeneous plane TEM-wave propagating entirely in
medium 2. The wave will be homogeneous in this limit case because along
a perfect electric conductor (PEC), the tangential components of an E-field
are always zero.

A similar solution for H-type surface-waves along an electrically thin coating
on a perfectly plane conductor does not exist. An explanation for this will be
given in the next section.
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3.4.6 Some Properties of Plane Surface Waves along a Coated, Electric
Perfectly Conducting Plane

An important feature of surface waves is the fact that the type of surface
wave that will propagate along a coated structure, is entirely determined by
the surface impedance at the material interface of the structure.

For E-type surface waves, the expression found for the longitudinal surface
impedance was (14)

Z j js
j

which iss
z

�
=

−
≥2

2 2

0
ωε σ

, .

This implies that the longitudinal surface impedance has to be inductive for
E-type surface waves to propagate along a coated PEC.
Expression (14) can be rewritten, by making use of equation (12), in a form
comparable with the input impedance of a shorted transmission line
[6, p. 503]

( ) ( )Z s
j

s h j s
j

s hs
z

z
z

z�
= −

+
=

−
1

1 1
1

1

1 1
1σ ωε ωε σ

tan tan . (33)

Therefore, in order to obtain an inductive surface impedance, the electrical
height of the coating must be such that

( )n s h nzπ π≤ < +1 2 1
2

(34)

where n is a positive integer and sz
z

1
1

2= π
λ

.

n+1 is also the total number of modes that may exist along a PEC with a
given coating of height h. Note that only the fundamental E-type mode has
no low-frequency cutoff. It is worth pointing out that below the cutoff
frequency a surface wave does not become evanescent but ceases to exist
altogether [7, p. 12-7].

The only wave able to propagate along the coated structure is a vertically
polarized TEM-wave when s h nz1 = π . This wave can be seen as a
degenerate form of an E-type surface wave. The phase constant β x  will
equal k2 in this case and jsz2 0→ .
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Likewise, the expression for the transversal surface impedance associated
with H-type surface waves is (25)

Z j
js

which isst
z

= − <ωµ2

2

0, .

This means that the transversal surface impedance has to be capacitive in
order to have H-type surface wave propagation.
By virtue of (23), (25) becomes

( )Z j
s

s hst
z

z=
ωµ1

1
1tan . (35)

Hence, the constraints for the height h of the coating are

( ) ( )2 1
2

11n s h nz+ ≤ < +π π (36)

where n is a positive integer and sz
z

1
1

2= π
λ

.

n+1 is also the total number of modes that may exist along a PEC with a
given coating of height h. Note that all H-type modes, even the lowest order
mode, have low-frequency cutoff. This is why one should refrain from
calling the lowest H-type mode the fundamental H-type mode. However, the
lowest order E-type surface wave mode is the fundamental mode. All this
can be explained by the fact that this study deals with surface waves along
a coated, electric perfectly conducting plane and not a coated, magnetic
perfectly conducting plane.

The only wave able to propagate along the coated structure is a horizontally

polarized TEM-wave when ( )s h nz1 2 1
2

= + π .

This wave can be seen as a degenerate form of an H-type surface wave.
The phase constant β x  will equal k2 in this case and jsz2 0→ .

In the case of a coated plane PEC, the fundamental E-type mode is usually
called the TM0 mode. Whereas the lowest H-type is labelled as the TE1
mode. This somewhat peculiar numbering system originates from the mode
numbering in plane dielectric slab waveguides [3, pp. 712-716].

In contrast to ordinary metallic waveguides, only a finite number of discrete
surface wave modes (i.e. n+1 modes) may exist at any given frequency.
As shown in the preceding sections it is necessary that k1 > k2 for surface
wave propagation to occur.

Both E-type and H-type surface waves can also be supported by a
corrugated surface with thin metal walls and a suitable artificial surface
impedance [3, pp. 708-712]. Corrugated surfaces with thick metal walls will
briefly be discussed in Chapter 5.
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3.4.7 The Continuous Eigenvalue Spectrum and Improper Solutions

Guiding structures may be classified into closed and open types. A closed
guiding structure possesses a finite cross section which is bounded by wall
that are impermeable to radiation and confine the electromagnetic field to
the interior of the waveguide. The field inside a closed guiding structure
may be decomposed into a complete set of discrete normal modes each of
which individually satisfies the relevant boundary conditions [8, p.155].

In contrast to closed waveguides, open guiding structures do not possess
walls completely impermeable to radiation and, therefore, power flow and
stored energy are not confined to the inside of the guiding structure. The
radiated field is represented by a continuous spectrum of modes which on
open structures appears in addition to the discrete mode spectrum. The
continuous eigenvalue spectrum of planar structures consist of all
homogeneous and inhomogeneous standing plane waves that individually
satisfy the boundary conditions with a continuous range of phase constants
such that − ∞ < ≤βx k2

2
2  [8, p. 156]. On the other hand, the discrete

spectrum (also termed proper) contains only a finite number of modes that
decay at infinity. The proper discrete eigenvalue spectrum corresponds to
the various surface waves supported by the structure and which are
solutions of the dispersion equations (12) and (23). In contrast to a closed
guiding structure, the dispersion equations of an open structure may
possess, in addition to the proper solutions, other discrete solutions, termed
improper, that correspond to fields which grow away from the structure and
violate the radiation condition. The improper discrete eigenvalue spectrum
represents the various leaky waves which are, as was mentioned before,
improper solutions to the dispersion equations. The totality of the proper
discrete eigenvalue spectrum and the continuous eigenvalue spectrum
corresponds to a complete set of eigenfunctions along which the physical
field along an open structure may be expanded.

Note that in the previous discussion the more general term “eigenvalue” is
used instead of the word “root”. Here is explained why. Roots are solutions
to a dispersion equation, whereas eigenvalues are solutions to Hertz’s
vector wave equation (2.1), which is in fact an eigenvalue equation. All
roots of a dispersion equation are eigenvalues of (2.1), but not all
eigenvalues of (2.1) are roots of a dispersion equation.
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To find the complete set of eigenvalues in which the field of an arbitrary
source may be expanded, consider a plane wave, not necessary
homogeneous, incident at an angle θ2i on a coated PEC, as shown in
Figure 3.6 for a parallel polarized plane wave. Remember that an
inhomogeneous plane wave is represented by an imaginary angle of
incidence.

Figure 3.6: A parallel polarized plane wave incident at an angle θ i  on a
coated PEC

In the coating, a standing wave may exist due to the reflections at the
electric perfectly conducting plane and the material interface. There may
also be a reflected wave above the coating. If this is the case, the resulting
field above the interface will be that of a standing wave. Note that in these
statements no restrictions are put on the value of the wave numbers k1 and
k2. This means that even if k2 > k1, the resulting field in medium 2 will still be
a standing wave, not a leaky wave. At this point, it is interesting to compare
the situation in Figure 3.6 with that of Figure 3.2 where in medium 2 a leaky
wave will exist when k2 > k1. The big difference between Figure 3.6 and
Figure 3.2 is that in Figure 3.6 the incident wave comes from medium 2
while in Figure 3.2 the wave is incident from medium 1. This explains the
absence of leaky wave modes in Figure 3.6, even if k2 > k1.

The transverse field Fy in the two regions may be represented as follows
( ) ( )[ ][ ]F A jk z xy i i2 2 2 2 2= − − ⋅ + ⋅exp cos sinθ θ

( ) ( ) ( )[ ][ ]+ − − + ⋅RA jk z h xi i2 2 2 22exp cos sinθ θ , (37a)

( ) ( )( )[ ]F A k z jk xy t t1 1 1 1 1 1= ⋅ ⋅ − ⋅cos cos exp sinθ θ (37b)
where
Fy = Ey for perpendicular polarized waves and
Fy = Hy for parallel polarized waves.

It may be necessary to shed some light on the origin of these expressions.
The field in medium 2 is written explicitly as the combination of an incident

x

z

h2h

θ1t

θ 2i

σ = +∞

� �

F Hy y=

�

E

k1

k2
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wave and a reflected wave. The complex amplitude ratio between the
reflected and the incident wave is given by the reflection coefficient R. The
field in medium 1 is a standing wave. In both media the wave vector 

�

k  is
decomposed into its components along the x- and z-axis

( )
� �

k kx = sin θ ;   ( )
� �

k kz = cos θ .

Note that in (37) the phase is referenced to the phase at the point (0,0,h).
Hence, the phase of the reflected wave equals zero in the image point
(0,0,-h).

The boundary conditions require the tangential field intensities to be
continuous across the material interface. They can easily be imposed by
making use of a transverse equivalent network (Fig. 3.7) [8, pp. 156-162].
This eliminates the need to deal with the field expressions (37) directly. The
dispersion equations and hence the discrete eigenvalue spectrum can be
obtained by applying the transverse resonance. The transverse resonance
condition requires that at any point along the equivalent transmission line,
the sum of the impedance looking in one direction and the impedance
looking into the other direction equals zero or
Z Z↑ + ↓ = 0 which is equivalent to Y Y↑ + ↓ = 0 [8, p. 158]. (38)

Figure 3.7: Transmission-line equivalent of a coated PEC

In Figure 3.7, Zc1 is the characteristic wave impedance of the coating and
Zc2 the characteristic wave impedance of medium 2. For parallel polarized
incident waves these characteristic impedances are

( )Z E
Hc

x

y
t1

1

1
1 1/ / cos= = η θ  and ( )Z E

Hc
x

y
i2

2

2
2 2/ / cos= = η θ , (39)

whereas for perpendicular polarized incident waves

( )Z
E
Hc

y

x t
1

1

1

1

1
⊥ = =

η
θcos

 and ( )Z
E
Hc

y

x i
2

2

2

2

2
⊥ = =

η
θcos

. (40)

hZc1

Zc2

+∞

Z Zs↓ = − ↑
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The coating acts like a length of transmission line terminated by a short
circuit (Fig. 3.7). Hence, for parallel polarized waves the surface impedance
at height z = h is

( )[ ] ( ) ( )[ ]Z E z h
H z h

jZ hk j hks
x

y
c t t t� / / / /

( )
( )

tan cos cos tan cos= =
=

= =1 1 1 1 1 1 1θ η θ θ ,

(41)
whereas for perpendicular polarized waves

( )[ ] ( ) ( )[ ]Z
E z h
H z h

jZ hk j hkst
y

x
c t

t
t⊥ ⊥=

=
=

= =
( )
( )

tan cos
cos

tan cos1 1 1
1

1
1 1θ η

θ
θ .

(42)

Note that the surface impedance is a longitudinal impedance for parallel
polarized waves and a transversal impedance for perpendicular polarized
waves.

Applying the transverse resonance condition to (39) and (41), respectively
(40) and (42), results in the dispersion equations for E-type and H-type
surface waves, respectively. Moreover, the proper solutions to these
dispersion equations are poles of the reflection coefficient R, as will be
shown now.

For parallel polarized waves, R //  equals the current reflection coefficient Γi

because Fy = Hy in (37a), thus
( ) ( ) ( )[ ]
( ) ( ) ( )[ ]R Z Z

Z Z
j hk
j hki

c s

c s

i t t

i t t
/ / / /

/ / / /

/ / / /

cos cos tan cos
cos cos tan cos

= = −
+

=
−
+

Γ 2

2

2 2 1 1 1 1

2 2 1 1 1 1

�

�

η θ η θ θ
η θ η θ θ

. (43)

For perpendicular polarized waves, Fy = Ey and hence R ⊥  must equal the
voltage reflection coefficient Γv

( ) ( )[ ] ( )

( ) ( )[ ] ( )
R Z Z

Z Z

j hk

j hk
v

st c

st c

t
t

i

t
t

i

⊥ ⊥
⊥ ⊥

⊥ ⊥

= = −
+

=
−

+
Γ 2

2

1

1
1 1

2

2

1

1
1 1

2

2

η
θ

θ η
θ

η
θ

θ η
θ

cos
tan cos

cos

cos
tan cos

cos

. (44)
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A first group of solutions to (37a) and (37b) are the E-type surface wave
modes which are poles for the reflection coefficient R // . To see this, apply
the transverse resonance condition to (43)

( ) ( ) ( )[ ]R Z Z j hkc s i t t/ / / / / / cos cos tan cos→ ∞ ⇔ + = ⇔ + =2 2 2 1 1 1 10 0
�

η θ η θ θ .
(45)

In (45), let
( )s kz t1 1 1= cos θ (46)

( )⇒ = =
−

−





= −
+

j j
k

s

j
j

j
s s

jt z z
zη θ

η

µ

ε
σ
ω

ω µ ε
σ
ω

σ ωε1 1
1

1
1

1

1
1

1 1
1

1
1

1 1

cos (47)

and ( ) ( )s k js
jz i i
z

2 2 2 2 2
2

2 2

= ⇒ =
+

cos cosθ η θ
σ ωε

. (48)

Substituting (46), (47) and (48) into (45) results in

( )s
j

s h js
j

z
z

z1

1 1
1

2

2 2σ ωε σ ωε+
=

+
tan .

This is the dispersion equation for E-type surface wave modes (12) which
was derived earlier in Section 3.4.2. The here presented alternative method
for finding a dispersion equation might be somewhat quicker, it does not
provide the insight into the actual field distributions of the propagating
wave.
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H-type surface wave modes are also solutions to (37a) and (37b) and at the
same time poles for the reflection coefficient R⊥ . To see this, apply the
transverse resonance condition to (44)

( ) ( )[ ] ( )R Z Z j hkst c
t

t
i

⊥ ⊥ ⊥→ ∞ ⇔ + = ⇔ + =2
1

1
1 1

2

2

0 0η
θ

θ η
θcos

tan cos
cos

.

(49)

In (49), let
( )s kz t1 1 1= cos θ (50)

( )⇒ = = −



 −

=j j k
s

j j
j s

j
st z z z

η
θ

η
ω µ ε

σ
ω

µ

ε
σ
ω

ωµ1

1

1 1

1
1 1

1 1

1
1 1

1

1

1
cos

(51)

and ( ) ( )s k j
jsz i

i z
2 2 2

2

2

2

2

= ⇒ =cos
cos

θ η
θ

ωµ . (52)

Substituting (50), (51) and (52) into (49) results in

( )j
s

s h j
jsz

z
z

ωµ ωµ1

1
1

2

2

tan = − .

This is the dispersion equation for H-type surface wave modes (23) which
was derived earlier in Section 3.4.3.

Although up to now surface waves have been considered to be produced
by the pole in the expression for the reflection coefficient, they may equally
be seen as being produced by a zero of the reflection coefficient. Whether
a surface wave mode should be associated with a zero or a pole of the
reflection coefficient depends on the fact whether the field above the
dielectric is considered to be a reflected wave or an incident wave, because
in case of the latter, (48) and (52) change to

( ) ( )s k js
jz i i
z

2 2 2 2 2
2

2 2

= − ⇒ = −
+

cos cosθ η θ
σ ωε

and ( ) ( )s k j
jsz i

i z
2 2 2

2

2

2

2

= − ⇒ = −cos
cos

θ η
θ

ωµ , respectively.

The characteristic wave impedances Zc2// and Zc2⊥ change accordingly, but
the dispersion equation remains the same.
To summarize, if the field in medium 2 is considered as an incident wave,
the solution corresponds to a zero of the reflection coefficient and not a
pole, as is the case if the field is considered as a reflected wave [3, p.718].
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The system of equations (37a) and (37b) has also other solution types in
addition to the previously found surface wave solutions. Standing waves
along the z-axis exists for all real angles of incidence 0 902≤ ≤ °θ i

( )⇒ ≤ = ≤0 2
2

2
2 2

2 2
2s k kz icos θ

⇒ ≤ = − ≤0 2
2
2

2
2

2
2β x zk s k

⇒ ≤ ≤0 2β x k . (53)

A standing wave solution along the z-axis will also exist for imaginary
angles of incidence

( )s k k
k s

j jz i

x z
x

2
2

2
2 2

2 2
2

2
2
2

2
2 0= >

= −




⇒ − ∞ < <
cos θ

β
β . (54)

The homogeneous and inhomogeneous standing wave solutions given in
(53) and (54), respectively, form the continuous eigenvalue spectrum.
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3.4.8 Traveling Waves Categorized by Surface Impedance

Both the proper and the improper discrete eigenvalue spectra represent
guided wave modes, which are often called traveling waves. These plane
waves are characterized by the orientation of 

�

α 2  and 
�

β 2  in medium 2,
which in turn depends on the sign of the real and imaginary parts of the
surface impedance [8, pp. 164-167]1. This relation will be explored in more
detail now.

The complex wave vector 
�

k 2  in medium 2 can be decomposed into its
components along the x- and the z-axis

( )
� �

k kx i2 2 2= sin θ ;   ( )
� �

k kz i2 2 2= cos θ
where k j sz z z z2 2 2 2= − =β α . (55)

Substituting (55) into the expression for the surface impedance previously
obtained for E-type plane surface waves (14), gives

Z R jX js
j

s
j

j
js s s

z z z z
� � �

= + = −
+

= −
−

=
− +

−
2

2 2

2

2 2

2 2

2 2σ ωε ωε σ
β α

ωε σ
. (56)

This results in the following set of rules for parallel (TM) polarized (E-type)
traveling waves

( ) ( )sign sign Rz sβ 2 = −
�

, (57a)

( ) ( )sign sign Xz sα 2 =
�

. (57b)

Rewriting the surface impedance expression for H-type plane surface
waves (25) as a surface admittance and substituting (55) yields

Y G jB s j
st st st

z z z= + = − =
− +2

2

2 2

2ωµ
β α

ωµ
. (58)

Hence, for perpendicular (TE) polarized (H-type) traveling waves
( ) ( )sign sign Gz stβ 2 = −   and (59a)

( ) ( )sign sign Bz stα 2 = . (59b)

1 In reference [8], a rather unusual sign convention is used in which -j is
replaced by +i.
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The classification of traveling wave types according to the surface
impedance is shown in Figure 3.8 and Figure 3.9.
(For more information, see [8, pp. 166-167].)

Figure 3.8: Classification of the proper guided waves along a coated plane
PEC (Im(k2) = 0)

Figure 3.9: Classification of the improper guided waves along a coated
plane PEC (Im(k2) = 0)
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3.4.9 The Mapping of Fast and Slow Traveling Waves onto the w-Plane

Up to now, little has been said about the requirements for fast and slow
traveling wave propagation. This is mainly due to the fact that sz2 has thus
far always been expressed as a dual-valued function of βx. This section
explains how sz2 can be transformed into a single-valued function of a new
complex variable w.

Fast electromagnetic waves are waves with a phase velocity vp greater than
c0, whereas slow electromagnetic waves are waves with vp smaller than c0.
c0 is the velocity of light in a vacuum, i.e. 299792458m/s.

The phase velocity of a wave is
( )vp =

Re β
ω

. (60)

In view of (60), alternative definitions for fast and slow waves are
β < k0 and β > k0, respectively.
Note that it is only useful to talk about fast and slow waves when k2 = k0.

Introducing the trigonometric transformation (Fig. 3.10) [8, pp. 171 & 241]
( )β x k w= 0 sin     where w j= +ξ η , (61)

results in a single-valued expression for sz0

( ) ( )β
β

x

x z
z

k w
k s

s k w
=
= +





⇒ =0

0
2 2

0
2 0 0

61
213

sin ( )
( . )

cos . (62)

Figure 3.10: Graphical representation of the trigonometric transformation

The real part and imaginary part of the complex phase constant βx can be
written in terms of ξ  and η.

( ) ( )β ξ ηx k w k j= = +0 0sin sin

 ( ) ( ) ( ) ( )[ ]= +k j j0 sin cos cos sinξ η ξ η    [9, p. 15]

 ( ) ( ) ( ) ( )[ ]= +k j0 sin cosh cos sinhξ η ξ η    [9, p. 31] (63)

 ( )= ′ − ′′ = ′ −β β β αx x x xj j .

Likewise,

w

sz0

βx

k0



53

( ) ( )s k w k jz0 0 0= = +cos cos ξ η

  ( ) ( ) ( ) ( )[ ]= −k j j0 cos cos sin sinξ η ξ η    [9, p. 15]

  ( ) ( ) ( ) ( )[ ]= −k j0 cos cosh sin sinhξ η ξ η    [9, p. 31] (64)

  ( )= −β αz zj0 0 .

All possible traveling wave types (backward and forward propagating) can
now be mapped into a strip − ≤ <π ξ π  of the w-plane (Fig. 3.11) [8, p.
174].

 
Figure 3.11: Traveling wave types as a function of eigenvalue location in
the w-plane

Note that if in (64): η = ⇒ =0 00Im( )sz , which corresponds to a homo-
geneous wave. This confirms that a complex angle of incidence implies an
inhomogeneous incident wave (in fact, w could be replaced by θ).

Finally, the boundary between fast and slow waves is given by
( ) ( ) ( )v
kp

x= = = ±
Re

sin cosh
β

ξ η
0

1.

SW: Surface Wave
CW: Complex Wave
LW: Leaky Wave
NW: Non-contributing
        Wave

βz0

αz0

−π π

η

ξ0 −π/2 π/2

CWLWNW

LW NWCW
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( ) ( )sin coshξ η = +1( ) ( )sin coshξ η = −1
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3.4.10 Numerical Examples

Now will be shown how the discrete eigenvalue spectrum can be found
graphically using MathcadTM Plus 6.0 Professional (1986-1995 MathSoft,
Inc.). Only E-type waves are investigated. The dispersion equation of the
proper E-type traveling waves (surface waves and complex waves) (13) is
rewritten in a form more suitable for numerical analysis

( ) ( ) ( )
( )F

k
j

h k
k

k

k
jEP x

x
x

x

x

xβ
β

σ ωε
β

β

β

β
σ ωε

=
−

+
− −

−

−
⋅

−
+

=1
2 2

1 1
1
2 2

2
2
2

2
2
2

2
2
2

2 2

0tan
Re

Re
. (65)

Similarly, for the improper traveling waves
(leaky waves and non-contributing waves)

( ) ( ) ( )
( )F

k
j

h k
k

k

k
jEI x

x
x

x

x

xβ
β

σ ωε
β

β

β

β
σ ωε

=
−

+
− +

−

−
⋅

−
+

=1
2 2

1 1
1
2 2

2
2
2

2
2
2

2
2
2

2 2

0tan
Re

Re
. (66)

The eigenvalues of the forward propagating E-type traveling wave modes
can be found graphically by plotting equations (65) and (66) respectively in
function of the complex phase constant β x  (see Fig. 3.12). An eigenvalue
on this plot is characterized by a null (black dot). It turns out that the nulls
are often accompanied by sharp peaks in their immediate neighbourhood.
Nulls are very localized features and can therefore easily be overlooked
because computers can plot the value of a function only in a finite number
of points. One way to prevent eigenvalues from being overlooked, is to
zoom in on those regions of the plot where eigenvalues may be expected.

Another option is to use a numerical root finder to locate the eigenvalues.
Each root finding algorithm requires one or more start values. However,
when there is more than one mode propagating, it is often difficult to direct
the root finder towards one particular eigenvalue. The Newton-Raphson
algorithm, as implemented in the root finder of MathcadTM is more prone to
this defect than the secant algorithm for example. With the secant root
finding method, an eigenvalue can be bracketed by appropriately specifying
the two start values of the algorithm. Reference [10] describes this method
in detail.

Another very elegant graphical solution method has been described in
[3, pp. 712-716]. Unfortunately, this method is not applicable for lossy
media.
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The inability to annotate graphs in MathcadTM, made it necessary to provide
additional information on these plots in the form of Figure 3.12.

 
Figure 3.12: Interpretation of the complex β x -plane plots generated by
MathcadTM

Remember that is not possible to show the eigenvalues of the proper
traveling wave modes and those of the improper traveling wave modes
simultaneously. Improper wave modes are located in the upper half of the
complex βx-plane and proper wave modes in the lower half of the plane.
Thus, for each plot produced by MathcadTM, only one half is relevant, the
other half is usually a mirror image and should be ignored.

Also, for all forward propagating lossless surface wave modes:
 k kx2 1< ≤β  and the lowest order surface wave mode has the highest

( )Re β x  (i.e. the slowest wave).

( )Im β β αx x x= − ′′ = −

( )Re β βx x= ′

�: Improper Mode
O: Local Maximum

�: Proper Mode
O: Local Maximum

( )Re k1

Lowest Order
Proper Mode
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EXAMPLE 1
This first example shows that only one E-type surface wave mode can
propagate in a plane layer of 6mm thick polyethylene (PE) on a PEC. This
mode is represented by a black dot (null) on the complex β x -plane plot. A
side view of this plot is also given. (See also Fig. 3.13.)

Figure 3.13: Interpretation of the side view of the complex β x -plane plot
with one E-type surface wave mode present

EXAMPLE 2
The complex β x -plane plot of this example clearly shows that increasing
the layer thickness to 15mm results in an additional proper E-type mode.

EXAMPLE 3
Further increasing the thickness to 80mm gives a multitude of proper
waves. They are all surface wave modes with Re( ) Re( ) Re( )k kx2 1< ≤β .

EXAMPLE 4
The same structure of Example 1 is now solved for improper E-type modes.
Only one non-contributing wave mode is present in the upper half of the
complex βx-plane. The lower half of the plot is a mirror image and should be
ignored.

( )Im β β αx x x= − ′′ = −

( )Re β βx x= ′

FES

( )Re k1( )Re k 2

( )Re β x

of
SW mode
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EXAMPLE 5
With a coating of 15mm PE, one can discern two improper E-type modes.
Ignore the lower half of the plot.

EXAMPLE 6
As the thickness of the coating further increases (here to 80mm), more and
more improper E-type modes start to appear on the upper half of the plot.
The lower half should be ignored.

EXAMPLE 7
This example shows the proper E-type waves along a 0.75mm thick sheet
of metal-backed Eccosorb GDS, a surface wave absorbing material
available from Emerson & Cuming.

EXAMPLE 8
The same configuration as in Example 7 is now solved for improper E-type
modes.

EXAMPLE 9
It is also very instructive to see what happens when more losses are
introduced into a relatively thick coating. From the plot can be inferred that
the attenuation is higher for the higher order surface wave modes. Some of
the higher order modes are fast waves and one null clearly stands out from
the rest. This null corresponds to the fast surface wave that will also exist
when the metal back plane is removed and the coating made infinitely thick.
(See also Section 3.6.)

EXAMPLE 10
The losses in the coating are apparently that high, that no improper wave
modes can be found in the upper half of the complex β x -plane plot.



Example 1: Plane Surface Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.006 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 258.189 0.045j

rad
m

=F EP β x 1.392 10 6 + 1.134 10 4 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 0.078 150.785j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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B EP ,x y
..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

2 104

4 104

B EP

|FES|

00 210 258 315
Re(βx) [rad/m]
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Example 2: Plane Surface Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.015 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m

61



E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 212.793 0.02j

rad
m

=F EP β x 9.521 10 7 + 3.138 10 7 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 0.114 36.811j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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Example 3: Plane Surface Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.080 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 264.487 0.072j

rad
m

=F EP β x 2.415 10 4 4.666 10 4 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 0.118 161.331j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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Example 4: Plane Improper Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.006 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x =β x 201.038 + 141.062j

rad
m

=F EI β x 3.234 10 4 + 1.567 10 4 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 205.872 + 137.75j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EI Re(βx) [rad/m]
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Example 5: Plane Improper Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.015 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x

not converging

=β x 262.33 0.032j
rad
m

=F EI β x 0.282 203.403j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 0.053 + 157.769j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EI Re(βx) [rad/m]
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Example 6: Plane Improper Waves along a Coated PEC
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.00091j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.080 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 315.075 0.063j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x =β x 113.224 29.77j

rad
m

=F EI β x 7.483 10 7 2.621 10 6 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 179.843 + 18.743j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EI Re(βx) [rad/m]
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Example 7: Proper Waves along Metal-Coated Eccosorb GDS
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 7.4 0.15j µ r1 1.4 0.48j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..8.6 109 Hz ω ..2 π f =ω 5.404 1010 Hz λ 0
c 0
f

=λ 0 0.035 m

Enter the thickness of the coating:

h .0.00075 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 180.243
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 587.412 104.031j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 180.243

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 182.647 2.328j

rad
m

=F EP β x 2.203 10 4 + 6.845 10 4 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 13.179 32.262j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 200 400

200

100

0

100

200

B EP Re(βx) [rad/m]
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Example 8: Plane Improper Waves along Metal-Backed
Eccosorb GDS

Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 7.4 0.15j µ r1 1.4 0.48j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..8.6 109 Hz ω ..2 π f =ω 5.404 1010 Hz λ 0
c 0
f

=λ 0 0.035 m

Enter the thickness of the coating:

h .0.00075 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 180.243
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 587.412 104.031j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 180.243

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x

not converging

=β x 383.827 52.015j
rad
m

=F EI β x 140.648 752.295j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 58.726 + 339.969j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 200 400

200

100

0

100

200

B EI Re(βx) [rad/m]
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Example 9: Plane Proper Waves along Thick Lossy Materials
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.5j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.080 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 316.974 34.645j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 175.338 5.359j

rad
m

=F EP β x 7.218 10 7 + 3.616 10 6 j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 115.228 8.154j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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Example 10: Improper Waves along Thick Lossy Materials
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.5j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the coating:

h .0.080 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 316.974 34.645j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type improper wave modes:

F EI β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EI β x β x

not converging

=β x 263.279 17.322j
rad
m

=F EI β x 192.578 291.527j kg m2 sec 1 coul 2

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 28.342 + 160.914j

rad
m

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EI ,x y
log ..F EI Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EI Re(βx) [rad/m]
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3.5 Plane Surface Waves along a Planar Three-Layer Structure

3.5.1  Introduction

The propagation of plane surface waves along the general planar three-
layer topology of Figure 3.14 will be examined now. The structure consist of
two half spaces with in between a plane layer of finite height h. All three
media are assumed to be homogeneous, linear and isotropic.

 

y
x

z

Figure 3.14: The planar three-layer structure; all three media are assumed
to be homogeneous, linear and isotropic

For surface propagation it is necessary that both k1 and k3 are greater than
k2. These are the very same requirements to obtain a dielectric wave-
guides. In fact, the waves propagating in dielectric waveguides (e.g. optical
fibres) are surface waves. The structure of Figure 3.14 can also be used to
model VLF-propagation or VHF-ducts.

ε µ σ1 1 1, ,

ε µ σ2 2 2, ,

ε µ σ3 3 3, ,

z = 0

z = h
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3.5.2 E-Type Plane Surface Waves along a Three-Layer Structure

A suitable Hertz function for medium 1 that satisfies the boundary condition
� � �

E H when z= = → −∞0
is ∏ = + −

1 1
1A e ejs z j xz xβ . (67)

The factor e js zz+ 1  may be interpreted as a wave propagating in the negative
z-direction with phase constant s s jsz z z1 1 1= ′ − ′′ . The traveling wave field will
show attenuation in the negative z-direction (i.e. be proper) when
′′ > ⇒ <s sz z1 10 0Im( ) . If on the other hand Im( )sz1 0> , the wave will be an

improper traveling wave and the radiation condition violated.
Hence, proper wave solutions are only obtained by letting

( )js sign k kz x x1
2

1
2 2

1
2= −





−Re β β . (68a)

To obtain improper wave solutions, let

( )js sign k kz x x1
2

1
2 2

1
2= − −





−Re β β . (68b)

Introducing (67) into (2) leads to
( )E A k s e ez z

js z j xz x
1 1 1

2
1

2 1= − + − β , (69a)

E A s e ex x z
js z j xz x

1 1 1
1= + −β β , (69b)

Ey1 0= , (69c)
Hz1 0= , (69d)
Hx1 0= , (69e)

( )H j j A e ey x
js z j xz x

1 1 1 1
1= + + −β σ ωε β . (69f)

A suitable Hertz function for medium 2 that can satisfy any boundary
condition is

( ) ( )[ ]∏ = + −
2 2 2 2 2A s z A s z ea z b z

j xxcos sin β . (70)
In general, this corresponds to a standing wave.

Recalling (2.13)
s k s kz x z x2

2
2
2 2

2 2
2 2= − ⇒ = + −β β . (71)

It is only for a matter of convenience that sz2 is chosen to equal the positive
square root. Choosing the negative square root would have no effect on the
results.

Introducing (70) into (2) results in
( ) ( ) ( )[ ]E k s A s z A s z ez z a z b z

j xx
2 2

2
2

2
2 2 2 2= − + −cos sin β , (72a)

( ) ( )[ ]E j s A s z A s z ex x z a z b z
j xx

2 2 2 2 2 2= − −β βsin cos , (72b)
Ey2 0= , (72c)
Hz2 0= , (72d)
Hx2 0= , (72e)

( ) ( ) ( )[ ]H j j A s z A s z ey x a z b z
j xx

2 2 2 2 2 2 2= + + −β σ ωε βcos sin . (72f)
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A suitable Hertz function for medium 3 that satisfies the boundary condition
� � �

E H when z= = → +∞0
is ( )∏ = − − −

3 3
3A e ejs z h j xz xβ . (73)

The factor ( )e js z hz− −3  may be interpreted as a wave propagating in the
positive z-direction with phase constant s s jsz z z3 3 3= ′ − ′′ . The traveling wave
field will show attenuation in the positive z-direction (i.e. be proper) when
′′ > ⇒ <s sz z3 30 0Im( ) . If on the other hand Im( )sz3 0> , the wave will be an

improper traveling wave and the radiation condition violated.
Hence, proper wave solutions are only obtained by letting

( )js sign k kz x x3
2

3
2 2

3
2= −





−Re β β . (74a)

To obtain improper wave solutions, let

( )js sign k kz x x3
2

3
2 2

3
2= − −





−Re β β . (74b)

Introducing (73) into (2) leads to
( ) ( )E A k s e ez z

js z h j xz x
3 3 3

2
3

2 3= − − − − β , (75a)
( )E A s e ex x z

js z h j xz x
3 3 3

3= − − − −β β , (75b)
Ey3 0= , (75c)
Hz3 0= , (75d)
Hx3 0= , (75e)

( ) ( )H j j A e ey x
js z h j xz x

3 3 3 3
3= + − − −β σ ωε β . (75f)

The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media and therefore
E E at zx x1 2 0= =
⇒ = −A s jA sz b z1 1 2 2 , (76)

as well as H H at zy y1 2 0= =

( ) ( )⇒ + = +σ ωε σ ωε1 1 1 2 2 2j A j A a . (77)

E E at z hx x2 3= =

( ) ( )[ ]⇒ − =js A s h A s h A sz b z a z z2 2 2 2 2 3 3cos sin , (78)

as well as H H at z hy y2 3= =

( ) ( ) ( )[ ] ( )⇒ + + = +σ ωε σ ωε2 2 2 2 2 2 3 3 3j A s h A s h j Aa z b zcos sin . (79)
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Rewriting (77)

A j
j

A a1
2 2

1 1
2=

+
+

σ ωε
σ ωε

and substituting the result into (76) gives
σ ωε
σ ωε

2 2

1 1
2 2 2 0+

+
+ =

j
j

s A js Az1 a z b . (80)

Rewriting (79)

( ) ( )[ ]A j
j

A s h A s ha z b z3
2 2

3 3
2 2 2 2=

+
+

+
σ ωε
σ ωε

cos sin

and substituting the result into (78) leads to

( ) ( )− +
+
+









js s h j

j
s s h Az z z z a2 2

2 2

3 3
3 2 2sin cosσ ωε

σ ωε

( ) ( )+ −
+
+









 =js s h

j
j

s s h Az z z z b2 2
2 2

3 3
3 2 2 0cos sin

σ ωε
σ ωε

. (81)

Equations (80) and (81) form a system of linear equations for the two
unknown factors A2a and A2b. The system is homogeneous, hence for non-
trivial solutions to exist, the coefficient determinant must be zero, that is

( ) ( )σ ωε
σ ωε

σ ωε
σ ωε

2 2

1 1
1 2 2

2 2

3 3
3 2

+
+

−
+
+











j
j

s js s h
j
j

s s hz z z z zcos sin

( ) ( )+ +
+
+









 =js js s h j

j
s s hz z z z z2 2 2

2 2

3 3
3 2 0sin cosσ ωε

σ ωε

( )⇒ +
+

− +
+











σ ωε
σ ωε

σ ωε
σ ωε

2 2

1 1
1 2

2 2

3 3
3 2

j
j

s js j
j

s s hz z z ztan

( )+ +
+
+









 =js js s h

j
j

sz z z z2 2 2
2 2

3 3
3 0tan

σ ωε
σ ωε

( )⇒ +
+

⋅ +
+

+






 = +

+
+ +

+








σ ωε
σ ωε

σ ωε
σ ωε

σ ωε
σ ωε

σ ωε
σ ωε

2 2

1 1

2 2

3 3
1 3 2

2
2 2

2 2

1 1
1

2 2

3 3
3

j
j

j
j

s s s s h js j
j

s j
j

sz z z z z z ztan .

(82)

Substituting (68a), (71) and (74a) into (82) results in the following ex-
pression for proper E-type traveling wave modes

( ) ( )− +
+

⋅ +
+

⋅ −




⋅ − ⋅ −




⋅ − + −











σ ωε
σ ωε

σ ωε
σ ωε

β β β β β2 2

1 1

2 2

3 3

2
1
2 2

1
2 2

3
2 2

3
2

2
2 2j

j
j
j

sign k k sign k k kx x x x xRe Re

( )⋅ − =tan h k x2
2 2β

( ) ( )k j
j

sign k k j
j

sign k kx x x x x2
2 2 2 2

1 1

2
1
2 2

1
2 2 2

3 3

2
3
2 2

3
2− +

+
⋅ −




⋅ − + +

+
⋅ −




⋅ −









β σ ωε

σ ωε
β β σ ωε

σ ωε
β βRe Re .

(83)

The nomenclature of symmetrical E-type modes (i.e. when k1 = k3) is
discussed in [3, pp. 712-716].
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3.5.3 H-Type Plane Surface Waves along a Three-Layer Structure

A suitable Hertz function for medium 1 that satisfies the boundary condition
� � �

E H when z= = → −∞0
is ∏ = + −

1 1
1A e ejs z j xz xβ . (84)

For sz1, the same reasoning applies as in the previous section.
Hence, proper wave solutions are obtained by letting Re( )jsz1 0≥  or

( )js sign k kz x x1
2

1
2 2

1
2= −





−Re β β . (85a)

To obtain improper wave solutions, let

( )js sign k kz x x1
2

1
2 2

1
2= − −





−Re β β . (85b)

Introducing (84) into (3) leads to
( )H A k s e ez z

js z j xz x
1 1 1

2
1

2 1= − + − β , (86a)

H A s e ex x z
js z j xz x

1 1 1
1= + −β β , (86b)

Hy1 0= , (86c)
Ez1 0= , (86d)
Ex1 0= , (86e)
E A e ey x

js z j xz x
1 1 1

1= + −β ωµ β . (86f)

A suitable Hertz function for medium 2 that can satisfy any boundary
condition is

( ) ( )[ ]∏ = + −
2 2 2 2 2A s z A s z ea z b z

j xxcos sin β . (87)
In general, this corresponds to a standing wave.

Recalling (2.13)
s k s kz x z x2

2
2
2 2

2 2
2 2= − ⇒ = + −β β . (88)

It is only for a matter of convenience that sz2 is chosen to equal the positive
square root. Choosing the negative square root would have no effect on the
results.

Introducing (87) into (2) results in
( ) ( ) ( )[ ]H k s A s z A s z ez z a z b z

j xx
2 2

2
2

2
2 2 2 2= − + −cos sin β , (89a)

( ) ( )[ ]H j s A s z A s z ex x z a z b z
j xx

2 2 2 2 2 2= − −β βsin cos , (89b)
Hy2 0= , (89c)
Ez2 0= , (89d)
Ex2 0= , (89e)

( ) ( )[ ]E A s z A s z ey x a z b z
j xx

2 2 2 2 2 2= + −β ωµ βcos sin . (89f)
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A suitable Hertz function for medium 3 that satisfies the boundary condition
� � �

E H when z= = → +∞0
is ( )∏ = − − −

3 3
3A e ejs z h j xz xβ . (90)

For sz3, the same reasoning applies as in the previous section.
Hence, proper wave solutions are obtained by letting Re( )jsz3 0≥  or

( )js sign k kz x x3
2

3
2 2

3
2= −





−Re β β . (91a)

To obtain improper wave solutions, let

( )js sign k kz x x3
2

3
2 2

3
2= − −





−Re β β . (91b)

Introducing (90) into (3) leads to
( ) ( )H A k s e ez z

js z h j xz x
3 3 3

2
3

2 3= − − − − β , (92a)
( )H A s e ex x z

js z h j xz x
3 3 3

3= − − − −β β , (92b)
Hy3 0= , (92c)
Ez3 0= , (92d)
Ex3 0= , (92e)

( )E A e ey x
js z h j xz x

3 3 3
3= − − −β ωµ β . (92f)

The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media and therefore
H H at zx x1 2 0= =
⇒ = −A s jA sz b z1 1 2 2 , (93)

as well as E E at zy y1 2 0= =
⇒ =µ µ1 1 2 2A A a . (94)

H H at z hx x2 3= =

( ) ( )[ ]⇒ − =js A s h A s h A sz b z a z z2 2 2 2 2 3 3cos sin , (95)

as well as E E at z hy y2 3= =

( ) ( )[ ]⇒ + =µ µ2 2 2 2 2 3 3A s h A s h Aa z b zcos sin . (96)
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Rewriting (94)

A A a1
2

1
2=

µ
µ

and substituting the result into (93) gives
µ
µ

2

1
1 2 2 2 0s A js Az a z b+ = . (97)

Rewriting (96)

( ) ( )[ ]A A s h A s ha z b z3
2

3
2 2 2 2= +

µ
µ

cos sin

and substituting the result into (95) leads to

( ) ( )− +








js s h s s h Az z z z a2 2

2

3
3 2 2sin cosµ

µ

( ) ( )+ −








 =js s h s s h Az z z z b2 2

2

3
3 2 2 0cos sin

µ
µ

. (98)

Equations (97) and (98) form a system of linear equations for the two
unknown factors A2a and A2b. The system is homogeneous, hence for non-
trivial solutions to exist, the coefficient determinant must be zero, that is

( ) ( )µ
µ

µ
µ

2

1
1 2 2

2

3
3 2s js s h s s hz z z z zcos sin−











( ) ( )+ +








 =js js s h s s hz z z z z2 2 2

2

3
3 2 0sin cosµ

µ

( ) ( )⇒ −








 + +









 =

µ
µ

µ
µ

µ
µ

2

1
1 2

2

3
3 2 2 2 2

2

3
3 0s js s s h js js s h sz z z z z z z ztan tan

( )⇒ ⋅ +






 = +









µ
µ

µ
µ

µ
µ

µ
µ

2

1

2

3
1 3 2

2
2 2

2

1
1

2

3
3s s s s h js s sz z z z z z ztan , (99)

Substituting (85a), (88) and (91a) into (99) results in the following ex-
pression for proper H-type traveling wave modes

( ) ( )− ⋅ ⋅ −




⋅ − ⋅ −




⋅ − + −











µ
µ

µ
µ

β β β β β2

1

2

3

2
1
2 2

1
2 2

3
2 2

3
2

2
2 2sign k k sign k k kx x x x xRe Re

( )⋅ − =tan h k x2
2 2β

( ) ( )k sign k k sign k kx x x x x2
2 2 2

1

2
1
2 2

1
2 2

3

2
3
2 2

3
2− ⋅ −




⋅ − + ⋅ −




⋅ −









β µ

µ
β β µ

µ
β βRe Re .

(100)

This equation is transcendental and can therefore only be solved
numerically for β x .
H-type surface wave modes in a three-layer structure can be subdivided
into odd and even modes in the special case when k1 equals k3. These
symmetrical H-type modes are further discussed in [3, pp. 712-716].



Example: Plane Proper Waves along a Dielectric Waveguide
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 1 0j µ r1 1 0j

σ2
.0
siemens

m
ε r2 2.26 0.00091j µ r2 1 0j

σ3
.0
siemens

m
ε r3 1 0j µ r3 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Enter the thickness of the middle layer:

h .0.006 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0 ε 3
.ε r3 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0 µ 3
.µ r3 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 209.585

rad
m

(k1 must be smaller than k2!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 315.075 0.063j

rad
m

k 3 ...j ω µ 3 σ3
..j ω ε 3 =k 3 209.585

rad
m

(k3 must be smaller than k2!)
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E-type proper wave modes:

js z1 β x
.

Re β x
2 k 1

2

Re β x
2 k 1

2
β x

2 k 1
2

js z3 β x
.

Re β x
2 k 3

2

Re β x
2 k 3

2
β x

2 k 3
2

F EP1 β x
...

σ2
..j ω ε 2

σ1
..j ω ε 1

σ2
..j ω ε 2

σ3
..j ω ε 3

js z1 β x js z3 β x k 2
2 β x

2

F EP2 β x tan .h k 2
2 β x

2

F EP3 β x
.k 2

2 β x
2 .

σ2
..j ω ε 2

σ1
..j ω ε 1

js z1 β x
.

σ2
..j ω ε 2

σ3
..j ω ε 3

js z3 β x

F EP β x
.F EP1 β x F EP2 β x F EP3 β x

β x k 2 β x root ,F EP β x β x =β x 315.075 0.063j
rad
m

=F EP β x 0 m 2

s z1 .j js z1 β x =s z1 0.085 235.258j
rad
m

s z3 .j js z3 β x =s z3 0.085 235.258j
rad
m
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N 301 Start x .0
rad
m

End x Re k 2 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log .F EP Start x .x ∆x .j Start y .y ∆y m2

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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H-type proper wave modes:

js z1 β x
.

Re β x
2 k 1

2

Re β x
2 k 1

2
β x

2 k 1
2

js z3 β x
.

Re β x
2 k 3

2

Re β x
2 k 3

2
β x

2 k 3
2

F HP1 β x
...

µ 2
µ 1

µ 2
µ 3

js z1 β x js z3 β x k 2
2 β x

2

F HP2 β x tan .h k 2
2 β x

2

F HP3 β x
.k 2

2 β x
2 .

µ 2
µ 1

js z1 β x
.

µ 2
µ 3

js z3 β x

F HP β x
.F HP1 β x F HP2 β x F HP3 β x

β x k 2 β x root ,F HP β x β x =β x 315.075 0.063j
rad
m

=F HP β x 0 m 2

s z1 .j js z1 β x =s z1 0.085 235.258j
rad
m

s z3 .j js z3 β x =s z3 0.085 235.258j
rad
m
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N 301 Start x .0
rad
m

End x Re k 2 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B HP ,x y
log .F HP Start x .x ∆x .j Start y .y ∆y m2

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B HP Re(βx) [rad/m]
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3.6  Plane Surface Waves along the Plane Interface of Two
Half Spaces

Dispersion equations for the proper traveling waves along the plane
interface of two half spaces (Fig. 3.1) can be obtained by letting h equal
zero in the dispersion equations of the three layer case ((83) and (100)).

For E-type proper waves this results in

( ) ( )0 2
1
2

2
1
2

1 1

2
3
2

2
3
2

3 3

= −





⋅
−

+
+ −





⋅
−

+
sign k

k
j

sign k
k

jx
x

x
xRe Reβ

β
σ ωε

β
β

σ ωε
. (101)

The dispersion for H-type proper waves is

( ) ( )0 2
1
2

2
1
2

1

2
3
2

2
3
2

3

= −





⋅
−

+ −





⋅
−

sign k
k

sign k
k

x
x

x
xRe Reβ

β
µ

β
β

µ
. (102)

EXAMPLE
The only propagating surface wave mode is a fast wave. Compare also the
location of the null in this example with the anomalous null in Example 9 of
Section 3.4.10.



Example: Plane Proper Waves along Two Half Spaces
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.26 0.5j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..10 109 Hz ω ..2 π f =ω 6.283 1010 Hz λ 0
c 0
f

=λ 0 0.030 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 209.585
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 316.974 34.645j

rad
m

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 209.585

rad
m
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E-type proper wave modes:

F EP β x
.

Re β x
2 k 1

2

Re β x
2 k 1

2

β x
2 k 1

2

σ1
..j ω ε 1

.
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β x root ,F EP β x β x =β x 175.483 5.753j

rad
m

=F EP β x 2.349 10 4 2.742 10 5 j kg m2 sec 1 coul 2

s z1 ..j
Re β x

2 k 1
2

Re β x
2 k 1

2
β x

2 k 1
2 =s z1 264.448 37.708j

rad
m

s z2 ..j
Re β x

2 k 2
2

Re β x
2 k 2

2
β x

2 k 2
2 =s z2 115.072 8.773j

rad
m
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N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B EP ,x y
log ..F EP Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200 300

200

100

0

100

200

B EP Re(βx) [rad/m]
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3.7 Appendix A: The Phase Velocity of an Inhomogeneous
Wave in a Loss Free Medium

The phase velocity of a wave in its propagation direction is given by

( )vp = ω
βRe

.

It will be shown now that every inhomogeneous plane wave in a loss free
medium ( Im( )k = 0 ) is a slow wave (i.e. β > k0) in its direction of
propagation.

Assume that the inhomogeneous plane wave propagates in the xz-plane.
The wave is then characterized by its wave vector
�

� �

k k e k ex x z z= + (A1)
where k jx x x= −β α  and k jz z z= −β α .

The direction of 
�

k  corresponds to the propagation direction 
�

β .
When the surrounding medium is loss free: Im( )k = 0 .
Hence, substituting the definitions of kx and kz into (A1) and squaring both
sides results in [8, p. 166]

( )k x z x z
2 2 2 2 2= + − +β β α α  because ( )− + =2 02 2 2 2j x x z zα β α β

⇒ = −
� �

�

k 2
2 2β α

⇒ = = + = + 





≥β β α α�

k k
k

k2 2
2

01 . (A2)

From this may be concluded that all inhomogeneous plane waves in a loss
free medium are slow waves in their direction of propagation.
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3.8 Appendix B: Proof of -j √√√√  x = √√√√  -x

Theorem
Let x be a complex number. Then
− = −j x x . (B1)

Proof
The above theorem can easily be proven by applying de Moivre’s theorem
to each side of (B1).

First, let θ be the argument of x.

Then, for the left hand side

− = − + °





+ + °











j x j x k j kcos sinθ θ360

2
360
2

          = + °





− + °











x k j ksin cosθ θ

2
180

2
180 . (B2)

The right hand gives

− = + °+ °





+ + °+ °











x x k j kcos sinθ θ180 360

2
180 360

2

         = + °+ °





+ + °+ °











x k j kcos sinθ θ

2
90 180

2
90 180

         = + °





− + °











x k j ksin cosθ θ

2
180

2
180 . (B3)

(B2) and (B3) are identical, therefore
− = −j x x .
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3.9 Conclusions

A plane surface wave is defined as a plane wave that propagates along a
plane interface of two different media without radiation.

Dispersion equations are derived for three different kinds of isotropic planar
surface wave guiding structures. This is done by treating these structures
as boundary-value problems and then solving these using Hertz potentials.
The dispersion equations have a discrete number of both proper and
improper solutions.

A distinction is made between E-type and H-type surface waves.

The concept of surface impedance has also been introduced. It was shown
that E-type surface waves can only propagate along inductive surface
impedances. H-type surface waves only propagate when the surface
impedance is capacitive. This is perhaps the important conclusion of this of
chapter because it implies that isotropic surface wave absorbers are
effective for one polarization only.

The proper discrete eigenvalue spectrum does not form a complete set of
eigenvalues along which the field of an open guiding structure may be
expanded. However, the combination of the proper discrete eigenvalue
spectrum and the continuous eigenvalue spectrum does.

Surface waves were also compared with other kinds of traveling waves.
Some of these other waves are improper waves. By this is meant that they
violate the radiation condition.

All traveling wave types can be either fast or slow waves. To prove this, the
discrete eigenvalue spectrum is mapped onto the w-plane. This w-plane
also prooves to be an excellent tool for designing surface wave guiding
structures with specific propagation properties.
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4 Axial Surface Waves in Isotropic Media

4.1  Definition

An axial surface wave is a plane wave that propagates in the axial direction
of a cylindrical interface of two different media without radiation.

Axial surface waves are plane waves because the phase remains constant
along a plane perpendicular to the cylinder axis. They are also
inhomogeneous because the field is not constant along surfaces of
constant phase.

A study of axial surface waves has been included in this text because this
type of waves may be the cause of some significant contributions to the
RCS of an aircraft. Axial surface waves can propagate along the body of a
coated missile (13 in Fig. 1.5) and also the waves that propagate along the
trailing edge of a coated wing (14 in Fig. 1.5) very much resemble these
axial surface waves.

Sommerfeld was first to suggest the existence of axial surface waves in
1899. Goubau subsequently developed the idea in its application to a
transmission line consisting of a coated metal wire (Fig. 4.1) [1]. With
reference to this early research, the terms Sommerfeld wave and Goubau
wave are sometimes used to denote an axial surface wave along a
homogeneous rod and a coated metal wire, respectively. Axial surface
waves are perhaps the most important type of surface waves with regard to
practical applications [2]. Not only the Goubau line of Figure 4.1, but also
the polyrod antenna supports axial surface waves [3].

Formulas for the electromagnetic field components in function of a Hertz
potential were found in Section 2.6. Moreover, (2.30) and (2.31) appear to
imply that the longitudinal components of 

�

E  and 
�

H are uncoupled, as was
the case with the plane surface waves  discussed in Chapter 3. However, in
general, coupling of the longitudinal field components Ez and Hz is required
by the boundary conditions of the electromagnetic field components
[4, p.38]. This is in contrast with plane surface waves where the boundary
conditions do not lead to coupling between the field components, resulting
in mode solutions for which the longitudinal component of either 

�

E  or 
�

H is
zero. These modes were called H-type (TE) and E-type (TM), respectively.
Cylindrical interfaces, however, not only support pure TE and TM axial
surface wave modes but also modes for which both Ez and Hz are nonzero.
These latter modes are in fact combinations of a TE and TM mode with a
same β z  and are therefore called hybrid modes. They are designated as
EH or HE modes, depending on whether the TM or the TE mode
predominates, respectively [5, p. 721]. Representations of the field
distributions of these different types of axial surface wave modes can be
found at the end of this chapter.
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4.2 Axial Surface Waves along a Coated, Electric Perfectly
Conducting Cylinder

The propagation of axial surface waves along a uniformly coated PEC
cylinder will be analysed in this section. The structure under investigation
actually corresponds to the Goubau line (Fig. 4.1).

z

φ

Figure 4.1: A uniformly coated PEC cylinder (Goubau line)

As was pointed out earlier, a cylindrical interface can support hybrid modes
in addition to the pure TM and TE modes. In order to obtain hybrid mode
solutions, equations (2.30) and (2.31) need to be evaluated simultaneously
which makes the analysis more complex than the analysis of plane surface
waves.

a
b

Medium 1

Medium 2

σ = +∞
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Suitable Hertz functions for medium 1 that can satisfy the boundary
conditions E and E at r az = = =0 0φ  are

[ ]∏ = + − −∑1 1 1 1 1e J n r Y n r
jn

n

j zA J s r A Y s r e e
n n

z( ) ( ) φ β  and (1)

[ ]∏ = + − −∑1 1 1 1 1m J n r Y n r
jn

n

j zB J s r B Y s r e e
n n

z( ) ( ) φ β (2)

where n is a positive integer.
Because of their similarity to harmonic functions and their oscillatory
behaviour, the Bessel functions Jn and Yn may be interpreted here as
standing waves in the r-direction.

Substituting (1) and (2) into (2.30) and (2.31), respectively, gives
( ) ( )[ ]E s A J s r A Y s r e ez r J n r Y n r

jn

n

j z
n n

z
1 1

2
1 1 1 1= + − −∑ φ β , (3a)

( ) ( )[ ]E j s A J s r A Y s rr z r J n r Y n r
n

n n1 1 1 1 1 1= − ′ + ′


∑ β

         ( ) ( )[ ]− + 


− −n
r

B J s r B Y s r e eJ n r Y n r
jn j z

n n

z
ωµ φ β1

1 1 1 1 , (3b)

( ) ( )[ ]E n
r

A J s r A Y s rz
J n r Y n r

n
n nφ

β
1 1 1 1 1= − +


∑

      ( ) ( )[ ]+ ′ + ′ 




− −j s B J s r B Y s r e er J n r Y n r
jn j z

n n
zωµ φ β

1 1 1 1 1 1 , (3c)

( ) ( )[ ]H s B J s r B Y s r e ez r J n r Y n r
jn

n

j z
n n

z
1 1

2
1 1 1 1= + − −∑ φ β , (3d)

( ) ( ) ( )[ ]H j
n j

r
A J s r A Y s rr J n r Y n r

n
n n1

1 1
1 1 1 1= −

+
+







∑
σ ωε

      ( ) ( )[ ]− ′ + ′ 




− −j s B J s r B Y s r e ez r J n r Y n r
jn j z

n n

zβ φ β
1 1 1 1 1 , (3e)

( ) ( ) ( )[ ]H j s A J s r A Y s rr J n r Y n r
n

n nφ σ ωε1 1 1 1 1 1 1 1= − + ′ + ′



∑

         ( ) ( )[ ]− + 


− −n
r

B J s r B Y s r e ez
J n r Y n r

jn j z
n n

z
β φ β

1 1 1 1 . (3f)

Bessel functions of the second kind (Yn) are not defined for negative real
arguments. Hence,

( )s sign k kr z z1 1
2 2

1
2 2= −





−Re β β . (4)

Large argument approximations for Jn and Yn are [5, p. 835], [6, p. 228]

J x
x

x nn( ) cos≈ − −





2
4 2π
π π  and (5)

Y x
x

x nn( ) sin≈ − −





2
4 2π
π π , both for x >> 1. (6)
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Suitable Hertz functions for medium 2 that satisfy the boundary condition
� � �

E H when r= = → +∞0
are
∏ = − −∑2 2

2
2e n r

jn

n

j zA H s r e e z( ) ( ) φ β  and (7)

∏ = − −∑2 2
2

2m n r
jn

n

j zB H s r e e z( ) ( ) φ β . (8)

The reason why Hankel functions of the second kind are used instead of
those of the first kind, becomes clear by looking at the large argument
approximations of both function types. These are [5, p. 835] and [6, p. 228]

H x
x

en

j x n
( )( )1 4 22≈

− −





π

π π

 and (9)

H x
x

en

j x n
( )( )2 4 22≈

− − −





π

π π

,  both for x >> 1. (10)

Comparing (9) and (10) with the equivalent Hertz potentials for plane
surface waves (3.7) and (3.18) and following the same reasoning as in
Sections 3.4.2 and 3.4.3 leads to  the following conclusions:
•  the use of Hankel functions of the second kind in Hertz potentials gives

rise to proper axial wave solutions,
•  whereas using Hankel functions of the first kind results in improper axial

wave solutions.
It is also important to know that Hankel functions are undefined for negative
pure real numbers [7]. However, when the imaginary part of the argument is
nonzero, the real part can have any value. Hence, for proper axial waves
(see also (3.8) and (3.19) and Appendix 3.B)

( ) ( )s sign k k js sign k kr z z r z z2 2
2 2

2
2 2

2
2

2
2 2

2
2= −





− ⇒ = −





−Re Reβ β β β ,

(11a)
whereas for improper axial waves

( ) ( )s sign k k js sign k kr z z r z z2 2
2 2

2
2 2

2
2

2
2 2

2
2= − −





− ⇒ = − −





−Re Reβ β β β .

(11b)

Substituting (7) and (8) into (2.30) and (2.31), respectively, gives
E s A H s r e ez r n r

jn

n

j zz
2 2

2
2

2
2= − −∑ ( ) ( ) φ β , (12a)

( ) ( )E j A s H s r n
r

B H s r e er z r n r n r
n

jn j zz
2 2 2

2
2

2
2

2
2= − ′ −





∑ − −β
ωµ φ β( ) ( ) , (12b)

( ) ( )E n
r

A H s r j B s H s r e ez
n r r n r

n

jn j zz
φ

φ ββ ωµ2 2
2

2 2 2 2
2

2= − + ′





∑ − −( ) ( ) , (12c)

H s B H s r e ez r n r
jn

n

j zz
2 2

2
2

2
2= − −∑ ( ) ( ) φ β , (12d)

( ) ( ) ( )H j
n j

r
A H s r j B s H s r e er n r z r n r

n

jn j zz
2

2 2
2

2
2 2 2

2
2= −

+
− ′













∑ − −σ ωε
β φ β( ) ( ) , (12e)

( ) ( ) ( )H j A s H s r n
r

B H s r e er n r
z

n r
n

jn j zz
φ

φ βσ ωε β
2 2 2 2 2

2
2 2

2
2= − + ′ −





∑ − −( ) ( ) . (12f)
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The tangential components of 
�

E  must vanish at the surface of the perfect
electric conductor.
E at r az1 0= =

( )
( )⇒ = −A

J s a
Y s a

AY
n r

n r
Jn n1

1

1
1  and (13)

E at r aφ1 0= =  gives, by virtue of (3c) and (13),

( )
( )B

J s a
Y s a

BY
n r

n r
Jn n1

1

1
1= −

′
′

. (14)

The tangential components of both 
�

E  and 
�

H are continuous across the
interface of two media. This gives, by virtue of (13) and (14)
E E at r bz z1 2= =

( ) ( )
( ) ( ) ( )⇒ −













− =s J s b
J s a
Y s a

Y s b A s H s b Ar n r
n r

n r
n r J r n rn1

2
1

1

1
1 1 2

2 2
2 2 0( ) , (15)

E E at r bφ φ1 2= =

( ) ( )
( ) ( )⇒ − −













n
b

J s b
J s a
Y s a

Y s b Az
n r

n r

n r
n r Jn

β
1

1

1
1 1

       ( ) ( )
( ) ( )+ ′ −
′
′

′












j s J s b
J s a
Y s a

Y s b Br n r
n r

n r
n r Jn

ωµ1 1 1
1

1
1 1

      ( ) ( )+ − ′ =n
b

H s b A j s H s b Bz
n r r n r

β ωµ( ) ( )2
2 2 2 2

2
2 2 0 , (16)

H H at r bz z1 2= =

( ) ( )
( ) ( ) ( )⇒ −
′
′













− =s J s b
J s a
Y s a

Y s b B s H s b Br n r
n r

n r
n r J r n rn1

2
1

1

1
1 1 2

2 2
2 2 0( ) (17)

and finally H H at r bφ φ1 2= =

( ) ( ) ( )
( ) ( )⇒ − + ′ − ′













σ ωε1 1 1 1
1

1
1 1j s J s b

J s a
Y s a

Y s b Ar n r
n r

n r
n r Jn

       ( ) ( )
( ) ( )− −
′
′













n
b

J s b
J s a
Y s a

Y s b Bz
n r

n r

n r
n r Jn

β
1

1

1
1 1

       ( ) ( ) ( )+ + ′ + =σ ωε β
2 2 2

2
2 2

2
2 2 0j s H s b A n

b
H s b Br n r

z
n r

( ) ( ) . (18)
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Equations (15), (16), (17) and (18) form a system of linear equations for the
four unknown factors A B A and BJ Jn n1 1 2 2, , . The system is homogeneous,
hence for non-trivial solutions to exist, the coefficient determinant must be
zero, that is

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

s J s b
J s a
Y s a

Y s b s H s b

n
b

J s b
J s a
Y s a

Y s b j s J s b
J s a
Y s a

Y s b n
b

H s b j s

r n r
n r

n r
n r r n r

z
n r

n r

n r
n r r n r

n r

n r
n r

z
n r r

1
2

1
1

1
1 2

2 2
2

1
1

1
1 1 1 1

1

1
1

2
2 2

0 0−












−

− −












′ −
′
′

′












−

( )

( )β ωµ β ωµ ( )

( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2
2

2

1
2

1
1

1
1 2

2 2
2

1 1 1 1
1

1
1 1

1

1
1 2

0 0

′

−
′
′













−

− + ′ − ′












− −
′
′













H s b

s J s b
J s a
Y s a

Y s b s H s b

j s J s b
J s a
Y s a

Y s b n
b

J s b
J s a
Y s a

Y s b

n r

r n r
n r

n r
n r r n r

r n r
n r

n r
n r

z
n r

n r

n r
n r

( )

( )

σ ωε β σ( ) ( ) ( )+ ′

=

j s H s b n
b

H s br n r
z

n rωε β
2 2

2
2

2
2

0

( ) ( )

.

(19)

Expanding the above determinant does not result in a simplified expression.
Equation (19) may therefore be regarded as the dispersion equation of the
axial surface waves propagating along a Goubau line.

However, it can be shown that, for n=0, (19) reduces to

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )σ ωε σ ωε1 1 2 0 1
0 1

0 1
0 1 0

2
2 2 2 1 0 1

0 1

0 1
0 1 0

2
2+ ′ − ′













− + −











′













j s J s b
J s a
Y s a

Y s b H s b j s J s b
J s a
Y s a

Y s b H s br r
r

r
r r r r

r

r
r r

( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )⋅ ′ −
′
′

′












− −
′
′












′












=j s J s b

J s a
Y s a

Y s b H s b j s J s b
J s a
Y s a

Y s b H s br r
r

r
r r r r

r

r
r rωµ ωµ1 2 0 1

0 1

0 1
0 1 0

2
2 2 1 0 1

0 1

0 1
0 1 0

2
2 0( ) ( ) .

(20)

Also, for n=0, two distinct types of uncoupled modes are propagating. This
can be seen from (3) and (12):
•  H E and Ez r, φ  belong to the field of TM modes,
•  whereas E H and Hz r, φ  make up the field of the TE modes.

Finally, comparing the two factors at the left side of (20) with (3.12) and
(3.23), shows that these factors correspond to the dispersion equation of
the TM and TE modes, respectively. Equations (5), (6), (9) and (10) also
show that the field expressions of an axial surface wave tend toward those
of a plane surface wave in the limit case of propagation along an electrically
extremely thick cylinder.



105

4.3 Field Distribution of Axial Surface Waves along a Coated,
Electric Perfectly Conducting Cylinder

Because of the oscillatory behaviour of the Bessel functions Jn and Yn,
there will be m roots of equation (19) for any given n value. These roots are
designated by βnm  and the corresponding modes are either TM0m, TE0m,
EHnm or HEnm [4, p. 41-42].

As was already suggested towards the end of the previous section, TM and
TE modes have no angular dependence, i.e. n=0.

The EH11 (or HE11) mode is the fundamental mode; it has no low-frequency
cutoff [6, p. 769].

Figure 4.2 shows the transverse electric field vectors in medium 1 for the
four lowest order modes.

Figure 4.2: The transverse electric field in medium 1 of the four lowest order
modes

EH21 or HE21

EH11 or HE11

TM01TE01
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The external field of a TM axial surface wave is depicted in Figure 4.3. For
a TE wave the E- and H-fields are interchanged and one of the fields is
reversed in sign.

z

r φ

Figure 4.3: The external field of a TM axial surface wave
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4.4 Conclusions

Axial surface waves are important because they may be the cause of some
significant contributions to the RCS of an aircraft. Axial surface waves can
for example propagate along the body of a coated missile.

There are three types of axial wave modes: TM, TE and hybrid. Axial
surface waves differ in this respect from plane surface waves that only
come in two types: TM (E-type) and TE (H-type).
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5 RCS Management of Edge Diffracted Waves

5.1 Introduction

Radar absorbing materials (RAM’s) applied as a coating on the surface of
an object, partially transform the energy of an incident radar beam into heat
and reduce the scattered field in some directions. Ordinary RAM’s (electric,
magnetic or hybrid) can be graded or have multiple layers in order to
increase the frequency band. Moreover, they are nearly always
homogeneous in directions parallel to the reflecting plate.

However, ordinary RAM’s are not effective in absorbing grazing incident
waves ( )θ i ≅ °90  and are therefore not successful in reducing forward
scattering [1]. This fundamental limitation results from the fact that any
ordinary RAM, independently of the incident wave polarization, has a
reflection coefficient that tends to unity when θ i → °90 . This can be
inferred from the reflection coefficient expressions (3.43) and (3.44).

For parallel polarized incident waves
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Likewise, for perpendicular polarized incident waves
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Ordinary radar absorbing materials are therefore not very useful in reducing
the forward scattering of an object.
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5.2 Converting the Incident Space Wave into Attenuated
Surface Waves

It is conceivable that absorption of grazing incident waves could be realized
if some special discontinuity (e.g. an edge, a wire or a grating) were placed
along an absorbing layer. Such a discontinuity could partially transform the
incident wave into surface wave modes which would propagate and
attenuate further along the layer [1]. (See Fig. 5.1.) In fact, gratings are
successfully employed in integrated optics as feeding structures for
dielectric waveguides where they yield space wave to surface wave power
conversion efficiencies of up to 80% [2].

Figure 5.1: Conversion of the incident space wave into attenuated surface
wave modes

However, the idea of converting the incident space wave into attenuated
surface wave modes has three essential defects for RCS reduction. Firstly,
any additional discontinuity creates an additional scattered field. Secondly,
the transformation of the incident field into surface wave modes is only
partial. Part of the incident field will remain propagating as a  space wave to
finally interact with the object and reflect. Thirdly, it is extremely difficult, if
not impossible, to build an absorbing layer which would allow the
propagation of both E-type plane surface waves and H-type plane surface
waves. As has been shown in Chapter 3, the longitudinal surface
impedance must be inductive to support E-type surface wave modes
whereas a capacitive transversal surface impedance is required to support
H-type surface wave modes. Thus, the surface impedance needs to be
anisotropic to allow propagation of both types of surface waves.
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Successfully admitting and then absorbing surface waves in a surface wave
absorbing material would therefore require the following actions:
1) Convert as much of the incident space wave field into surface wave

modes while trying to avoid generating additional forward scattering. This
has to be achieved not only for an incident angle of 90° but also for
angles close to 90°. Note also that the incident space wave can have any
polarization, which complicates matters even more.

2) Use a coating with an anisotropic surface impedance to enable the
propagation of both surface wave types.

3) Moreover, the coating has to have significant losses so that the surface
waves are sufficiently attenuated before they hit that part of the structure
that causes most of the forward diffracted fields. In the case of an aircraft
wing, the problem area which generates most of the edge diffracted
waves, is most often either the trailing edge of the wing or the air gap
between the flaps or ailerons (See Fig. 1.5 and 1.6). The effect of edge
diffraction is at its highest level for edges perpendicular to the radar
direction [1]. Step 3 involves maximizing the attenuation constant
α βx x= − Im( )  for all propagating surface wave modes.

Although surface wave absorbers based on the above principles are
already commercially available, their successful application under all
circumstances has not been reported in literature yet. It is also unclear, if
not doubtful, whether these surface wave absorbers are able to support
both types of surface waves. As has been pointed out already, the main
difficulty of the whole strategy is with the implementation of Step 1 and 2.
An edge wave RCS management strategy that does not suffer from these
defects will be presented next.

Ordinary surface wave absorbing materials may however still find some
useful applications. These are discussed at the beginning of Chapter 6.
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5.3 Soft Surfaces

5.3.1 Introduction

The main design goal for the surface wave absorbers discussed in the
previous section is to maximize the attenuation constant α βx x= − Im( )  for
all propagating surface wave modes. The strategy presented in this section
uses a completely different approach. The intention is to reradiate the
incident radar energy in directions away from the radar, rather than to
dissipate it.

An important observation is the fact that edge diffraction not only generates
surface waves but also space waves. The incident wave can have any
polarization depending on the polarization of the radar and the orientation
of the target. Therefore, the polarization of the edge diffracted space waves
and surface waves is generally unknown.

The effect of edge diffraction is completely absent if no fields are present in
the immediate vicinity of an object’s surface. First will be examined what is
needed to obtain this situation with surface waves. The discussion will be
restricted to the case of a coated PEC. However, the same reasoning can
be applied to multi-layered structures.

For surface waves to have no field protruding from the coating, it is
necessary that jsz2 → +∞ . In this case, the Hertz function of both the E-
type and the H-type surface waves (3.7) and (3.18) will be zero at the
interface (z = h). Hence, all surface wave field vectors will vanish at the
interface. jsz2 → +∞ , puts the following requirements on the values of the
longitudinal (3.14) and the transversal (3.25) surface wave impedance

Z js
js
z

�
= −

+
→ +∞2

2 2σ ωε
 and (3)

Z j
jsst

z

= − →ωµ2

2

0 . (4)

These requirements are met by an electromagnetic soft surface, as is
explained in the next section.



112

5.3.2 Definitions

The most general definition for an electromagnetic soft surface is a surface
along which the power density flux (i.e. the Poynting vector) is zero for any
polarization. This means that no electromagnetic wave of any kind
(including space waves and surface waves) will propagate along a soft
surface. An electromagnetic hard surface is a surface along which only a
TEM wave (i.e. space wave) can propagate. The density of power flow
usually has a maximum at the hard surface. The names soft and hard
surface were chosen on the analogy of acoustic soft and hard surface [3].

Although the terms longitudinal surface impedance and transversal surface
impedance were used at a number of occasions in this text, they were not
defined in their most general sense yet. In order to do so, it is first
necessary to define the directions longitudinal, transversal and normal with
respect to the propagation direction of a surface wave. The longitudinal
direction of a surface wave, 

�
� , corresponds to the propagation direction of

the surface wave and is tangential to surface of the guiding structure. The
transversal direction, 

�

t , is orthogonal to 
�
�  and also tangential to the

surface. Finally, the normal direction, �n , is such that 
� �

�
�

n t= × .

The longitudinal and transversal surface impedances are given by

Z E
Hs

t
�

�= −  and (5)

Z E
Hst

t=
�

, respectively, (6)

where E
�
 and Et are respectively the longitudinal and transversal compo-

nents of the E-field at the surface, H
�
 and Ht are the corresponding

components of the H-field.

Soft and hard surfaces can be uniquely defined in terms of their longitudinal
and transversal surface impedance.

For a soft surface, the Poynting vector needs to be zero a the surface. This
is obtained only if both Et and Ht are zero at the surface, which, in view of
(5) and (6), corresponds to: Z and Zs st�

= ∞ = 0. (7)
This requirement is identical with (3) and (4).

Only a TEM wave can propagate along a hard surface. Hence, E and H
� �

need to be zero at the surface. This is the same as requiring:
Z and Zs st�

= = ∞0 . (8)

Soft and surfaces are sometimes wrongfully defined in terms of grazing reflection
coefficients. For example, soft surfaces are said to be a surface for which R R// = = −⊥ 1.
However, in the introduction to this chapter was shown that for any material
R R// = = −⊥ 1 at grazing angles of incidence (1) and (2). This would lead to the wrong
conclusion that all surfaces are soft surfaces, which can not be true of course.
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5.4 The Practical Realization of a Soft Surface

5.4.1 Narrow-Band Soft and Hard Surfaces

The classical way to realize a soft surface is to corrugate an ideal conductor
with transverse rectangular grooves (Fig. 5.2) [3]. These act as shorted
parallel plate waveguides for the longitudinal polarization and transform the
short to Z = ∞  at the aperture of the corrugations if the slot depth

d n
n= +





1 2
4

λ (9)

where n is positive integer and λn the wavelength inside a groove.
Hence, the transversal component Ht will vanish at the aperture of the
corrugations. The transversal component Et is zero at the top face of the
perfect electrically conducting walls. At least three corrugations per
wavelength are required for the surface to appear as a soft surface [3].

 
Figure 5.2: A narrow-band soft surface
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A narrow band hard surface is obtained by turning the corrugated surface of
Figure 5.2 ninety degrees (see Fig. 5.3).

Figure 5.3: A narrow-band hard surface

The grooves of a corrugated surface can be filled with a dielectric in order
to maintain the aerodynamic properties of an object. However, corrugated
surfaces are still impractical in two ways: they are heavy and they are
difficult to manufacture. A much lighter and cheaper alternative is the strip-
loaded coating of Figure 5.4 [4].

 
Figure 5.4: A strip-loaded grounded dielectric and/or magnetic slab
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5.4.2 A Tuneable Soft Surface

A transversely corrugated surface acts as a soft surface on a discrete set of
frequencies only, given by (9). Although dual depth corrugations [4], [5]
could double the number of useful frequencies, corrugated surfaces remain
impractical because, in general, the operating frequency of a threatening
radar is not known in advance. Also the increase in useful bandwidth
offered by alternative corrugation techniques [4], [5] is too small to be
useful in RCS management.

What is really needed is either a tuneable soft surface, or even better, a
broad-band soft surface. A tuneable soft surface could be constructed by
replacing the strip-loaded slab of Figure 5.4 with either a strip-loaded
electrooptic material or a strip-loaded magnetically biased ferrite slab.

A number of electrooptic materials have the interesting property that their
permittivity is light dependent.

The incremental permeability of a ferrite (Fig. 5.5) can be changed by
varying the magnetic bias. An electromagnet is used to generate the
variable magnetic bias field. A tuneable microstrip antenna on this principle
has been reported in literature [6]. However, the relatively high weight of
ferrite materials and the energy consumption of an electromagnet make the
use of ferrites less favourable than employing electrooptic materials.

 

Figure 5.5: Minor hysteresis loop illustrating incremental permeability
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5.4.3 What is Needed for a Broad-Band Soft Surface?

A broad-band soft surface would consist of alternate series of good
electrically conducting transverse strips and good magnetically conducting
strips (see also Fig. 5.4). The tangential components of the electric field
vanish at the surface of a perfect electric conductor (PEC). Likewise, the
tangential components of the magnetic field are zero at the surface of a
perfect magnetic conductor (PMC). A lot of materials are known to be good
electric conductors. They are characterized by their high number of free
electrically charged particles. On the other hand, magnetic conductors do
not exist due to the absence of magnetic charges in nature. However, this
is the story for DC. For AC (and hence microwaves) materials that act as
good magnetic conductors should, in principle, exist. At least, this is what
must be concluded from comparing the definition of complex permittivity
with the definition of complex permeability (see also Section 2.2).

Permittivity ε ε ε σ
ω

= ′ − ′′ −j j (10)

where − ′′jε  is the loss contribution due to molecular relaxation

and − j σ
ω

 is the conduction loss contribution.

As was already mentioned in Section 2.2, the distinction between the two
loss contributions is rather artificial since it is based on the way these loss
contributions are measured.
For a PEC: σ ε= ∞ ⇒ = −∞Im( ) . (11)

Permeability µ has only one loss contribution due to hysteresis:
µ µ µ= ′ − ′′j . (12)

By analogy to (11), a perfect magnetic conductor (PMC) is characterized by
Im( )µ = −∞ . (13)

Thus, the magnet equivalent of an electric conductor is, for AC, a material
with extremely high magnetic losses. It can be shown that the area
enclosed by a hysteresis loop (Fig. 5.5) is a measure for the amount of
magnetic loss. Most magnetic materials used at microwave frequencies are
so called soft magnetic materials with thin hysteresis loops (e.g. ferrites)
and hence low losses. However, the exact opposite properties are required
for a magnetic conductor at microwave frequencies, namely a wide
hysteresis loop and hence high magnetic losses. Magnetic materials with
such properties are called hard magnetic materials. Permanent magnets
are always made of a hard magnetic material. However, the use of hard
magnetic materials at microwave frequencies has, to the author’s
knowledge, not yet been reported in literature.

To summarize, replacing the slab in Figure 5.4 with an extremely lossy
magnetic material would, in theory, result in a broad-band soft surface. An
experimental proof for this hypothesis is not available, but highly desirable.



117

5.4.4 Applying Soft Surfaces to an Aircraft Wing

Figure 5.6 shows how an ordinary aircraft wing can be retrofitted for
reduced RCS. Specular reflections from the leading wing edge are
significantly reduced by applying ordinary RAM. Soft surfaces on both sides
of the wing suppresses all edge diffracted waves in the radar direction,
independently of the radar polarization. Note however that the wing’s RCS
will increase for aspects other than head-on. (A soft surface is for example
a perfect reflector when viewed from above.) Serrations in the soft surfaces
are needed as a gradual impedance match for the incoming radar waves.

 
Figure 5.6: Retrofitting an ordinary aircraft wing for reduced RCS
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5.4.5 Theoretical Models and Experimental Results Reported in
Literature

The corrugated and strip-loaded surfaces are periodic structures. The
analysis of periodic structures by means of Floquet’s theorem is explained
in [7] and [8].

Although no experiments on soft surfaces were conducted by the author,
plenty of experimental results are available in literature. In references [5]
and [9] a radial surface wave antenna (Fig. 6.2) was employed to measure
the efficacy of soft surfaces in suppressing radiation along the surface. A
reduction of up to 13dB was measured in comparison with a smooth
conducting surface. Numerical simulations using the method of moments
gave similar results.

Diffraction coefficients for soft surfaces applied to wedges can be found in
[9] and [10].



119

5.5 Conclusions

Surface wave absorbing materials are not very useful in applications where
the radar beam polarization is unknown and/or where the edge diffracted
waves come in more than one polarization.

When properly oriented, a soft surface will suppress all radiation (both
space wave and surface wave) in the direction of the radar, independently
of the radar polarization and the polarization of the edge diffracted waves.
In this process, the incident radar energy is not absorbed but reradiated in
directions away from the radar.

A narrow-band soft surface can be obtained by corrugating a PEC with
transverse grooves of proper slot depth. A much lighter and cheaper
alternative is a strip-loaded coating.

Tuneable soft surfaces could be realized by employing electrooptic
materials or magnetically biased ferrites.

A broad-band soft surface could in principle be obtained by loading an
extremely lossy magnetic material with electrically conducting strips.

Serrations in a soft surface are needed as a gradual impedance match for
the incoming radar waves.
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6 Surface Wave Absorber Measurements

6.1 Introduction

Although soft boundaries form an electromagnetic superior solution for
reducing the RCS resulting from edge diffracted waves, isotropic surface
wave absorbers remain useful in many applications, even for RCS
management of edge diffracted waves. For example, surface wave
absorbers can be very effective in absorbing creeping waves when applied
to the fuselage of a plane. Also, in the case of a surface discontinuity, there
may be a problem with edge diffracted waves for one radar polarization
only, depending on the nature of the surface discontinuity and its aspect
angle. In such a case, an ordinary surface wave absorber (either E-type or
H-type, depending on the case) would be a good substitute for a soft
boundary. From this perspective it is obvious that there is a lot interest in
determining the quality and efficacy of commercially available surface wave
absorbers.

In order to fully characterize a surface wave absorber two physical
quantities need to be measured: the attenuation constant α and the phase
constant β, both in the direction of propagation. However, the two quantities
can be combined into one complex phase constant β β β β α= ′ − ′′ = ′ −j j , as
is done in this chapter. (See also Section 2.5.)

Many applications of surface wave absorbing materials are accompanied
with propagation of surface waves over planar or near-planar surfaces. A
test cell for surface wave absorbing materials should therefore be capable
of reproducing the properties of infinite plane surface wave propagation
without introducing any other propagation or scattering mechanisms.
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6.2 A Historical Overview of Surface Wave Measurement
Techniques

6.2.1 The Aperture Method

One of the few ways to generate a plane surface wave is depicted in Figure
6.1. The method was first suggested by Barlow and Cullen [1]1 in as early
as 1951 and is still in use today. The method is based on the theory
presented in Section 3.4.7. There, it was shown that a coated PEC will
support one or more surface wave modes for certain angles of incidence of
an illuminating plane wave (Fig. 3.6). Parallel polarized incident waves will
cause E-type surface waves to propagate along the coating, only when they
are incident at angles which are solutions of
(Snell’s law substituted into (3.43))
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H-type surface waves will result from perpendicular polarized waves
incident at angles which are solutions of
(Snell’s law substituted into (3.44))

( ) ( )
( )

( ) ( )
( )

R

j

k
k

hk k
k

j

k
k

hk k
k

i
i

i

i
i

i

⊥ =

+
−











−
























−
−











−
























=

cos
sin

cot sin

cos
sin

cot sin

θ
η

θ

η
θ

θ
η

θ

η
θ

2

2

2

1
2

2

1
1

2

1
2

2

2

2

2

1
2

2

1
1

2

1
2

2

1
1

1
1

0.

Also, note that the use of the term “Brewster angle” is inappropriate here.

1 The paper contains some errors which have been corrected in this text.
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An experimental set-up as shown in Figure 3.6 is insufficient if the field of
the surface wave is to be measured by a probe. Not only the field of the
surface wave will be present above the coating, but also the field of the
incident wave. (See equation (3.37a).) Therefore, part of the coating needs
to be shielded from the incident plane wave, as shown in Figure 6.1.

 

 

Figure 6.1: A method of generating plane surface waves (See text.)

If the wavelength is small compared with the height h of the aperture, ray-
optics theory will give a first approximation to the effect of the screen,
namely that below the shadow line ab there will be a plane wave travelling
down into the coating, provided that the angle of incidence is chosen well.
There will also be some surface wave energy in this region. The region right
and above the shadow line ab will contain the field of the surface wave
together with a small field contribution of diffracted waves coming from the
edge of the aperture. Starting at a distance b h i= ⋅ tan( )θ2  away from the
aperture, the field distribution near ground level will approximate that of a
plane surface wave.

A probe is used to measure the field intensity at different positions of the
aperture. From these measurements the surface wave attenuation over a
certain length of coating can be calculated. To determine the wavelength of
the surface wave, a reflecting wall is placed at the end of the coating and
the distance between two consecutive (rectified) maxima of the standing
wave pattern is measured. Twice this distance corresponds to the
wavelength of the surface wave.

The measurement technique described in this section is not without any
defects. Firstly, it is impossible to generate a plane wave; in practice, it can
only be approximated. Secondly, it is extremely difficult to determine at
what angle unknown coatings under test should be illuminated. Moreover,
this angle is often complex, implying that the incident wave should be
inhomogeneous. Also, the surface wave field can not be isolated because
of diffraction mechanisms. Finally, a probe for measuring the surface wave
field will always interfere with the field.
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6.2.2 The Broad-Band Radial Surface Wave Antenna

A plane surface wave can also be approximated by a radial surface wave at
a large distance from its point of excitation. Radial surface waves can easily
be excited using a radial surface wave antenna as in Figure 6.2.

Figure 6.2: A broadband radial surface wave antenna; the groundplane
diameter is about 1 meter

A similar set-up was used by Fernando and Barlow to make probe
measurements of the surface wave field [2]. However, at The University of
Hull this configuration has been used to obtain time domain data from
reflection coefficient measurements in the frequency domain over the band
1GHz to 11GHz [3]. For this purpose, the cylindrical antenna described in
[2] is replaced by a broad-band conical monopole antenna. The new
antenna is optimized for broad-band performance and has a height of
50mm with a flare angle of 90°. (More information on designing conical
monopoles can be found in [4].)

Frequency response or tracking error calibration is effected by measuring a
coaxial line short circuit at the input to the conical monopole.

After calibration, two measurements can be performed. First, data is taken
without coating the groundplane. The second measurement involves
covering the groundplane with the material under test. For both
measurements a peak in the time domain will occur at approximately

t r
v

= 2 , where r is the radius of the ground plane and v is the velocity of

propagation. This peak in the time domain reflection coefficient data is
caused by diffraction at the rim of the groundplane.

Only an average value of the phase constant β can be obtained by this
technique because v is a function of frequency for the surface wave.
Results are given in [3]. Also, the surface wave launching efficiency of the
antenna and the reflection coefficient at the rim are unknown. Therefore,
the attenuation data is only of qualitative value.
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6.2.3  Loss Measurements of the Goubau-Line

Loss measurements of the Goubau-line are perhaps the most accurate
surface wave loss measurements that have ever been made up to now.
Clearly, the waves propagating along a Goubau-line are not plane surface
waves but axial surface waves, which are easier to measure directly.
Nonetheless, a lot can be learned from the techniques employed in these
measurements.

Two methods have been reported that both refrain from using a probe to
measure the surface wave field. In a first measurement technique [5], a
Goubau-line resonator is formed by placing large circular plates at each
end of the Goubau-line. The power is fed to and from the resonator by
means of small coupling loops, one at each end plate. The attenuation of
the Goubau-line is obtained by the determining the half power bandwidth of
the surface wave resonator. The only thing that is somewhat cumbersome
about this method is the fact that the resonator needs to be retuned for
each measurement at a different frequency. Also, in order to obtain
maximum accuracy, the insertion loss and mutual coupling of the coupling
loops should be known.

In the other measurement method [6], an axial surface wave is launched on
the Goubau-line at one end by means of a launching horn. At the other end,
the Goubau-line is terminated by a movable short. Both the attenuation
constant α and the phase constant β can be inferred from two input
impedance measurements with different line lengths. A third measurement
with a line length shorter than in the previous measurements defines a
phase reference plane to which the previous measurements are calibrated
for frequency response (tracking error). Unlike the measurement techniques
described earlier in this section, this method has no fundamental limitations.
A technique very similar to this technique will be employed for measuring
plane surface waves. This new technique will be presented in the next
section.
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6.3 A Plane Surface Wave Simulator Cell Based on a Partially
Filled Rectangular Waveguide

6.3.1 Introduction

From the previous it has become clear that the generation of plane surface
waves is not evident if also the presence of other propagating waves (e.g.
the space wave and diffracted waves) has to be avoided. Moreover, in
order to make accurate measurements, at least one surface wave
calibration standard should be available.

It is, however, extremely difficult to meet the above-mentioned require-
ments with plane surface waves. Therefore, the new measurement
technique here presented, will be based on the strategy of replacing the
plane surface wave by another wave with similar properties but which suits
itself better to attenuation and phase constant measurements. The waves
propagating in a partially filled waveguide (Fig. 6.3) are proposed here as a
replacement for the plane surface waves. A partially filled waveguide has
the advantage of being completely shielded, and is hence less susceptible
to noise and interference from the lab environment. When taken care for,
only one mode will propagate inside the waveguide. Moreover, a short can
be reproduced accurately and thus serve as a calibration standard.

Even from an intuitive approach can be seen that the waves propagating
inside a partially filled waveguide of sufficient height have a lot in common
with plane surface waves. In Chapter 3 was shown that, away from the
material interface, the field of a surface wave decays exponentially. Putting
a horizontal metallic wall (e.g. the upper wall of a waveguide) sufficiently
high above the coated surface will influence the field of a plane surface
wave only to a very small extent. Adding vertical metallic walls (e.g. those of
a waveguide) will result in a sine or cosine dependence in the transversal
direction for all field components. However, these additional sine or cosine
factors are fully determined by the distance between the vertical walls (i.e.
the width of the waveguide). The presence of vertical walls will also cause
the complex phase constant β to be different from that of plane surface
wave propagation. Again, this effect can easily be accounted for: the
difference between both phase constants only depends upon the distance
between the vertical walls. A rigorous proof for all statements made in this
paragraph, will be given later in this chapter.

The complex phase constant of the wave in the partially filled waveguide
can be inferred from input impedance measurements of the waveguide
terminated by a short  circuit at different positions.

The proposed measurement method will here only be validated for single layer materials
that are linear, homogeneous and isotropic. There is however a high degree of similarity
between the surface wave fields over single layer and multi-layer materials. For this reason
it may be assumed that the measurement method presented in the section will be equally
suited for the characterization of homogeneous linear isotropic multi-layer coatings.
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6.3.2 The Partially Filled Rectangular Waveguide

The next two sections deal with the analysis of the waves propagating in a
partially filled rectangular waveguide (Fig. 6.3) [7]. In this analysis, it will be
assumed that the rectangular waveguide has perfectly conducting walls and
that it is filled with two different media as depicted in Figure 6.3. The
interface of these media is parallel with upper and lower wall of the
rectangular waveguide. Both media are assumed to be homogeneous,
linear and isotropic. The x-axis is chosen parallel with the propagation
direction.

0

b

y

z

x

h

a

Figure 6.3: A partially filled rectangular waveguide; both media are
assumed to be homogenous, linear and isotropic, the walls are perfectly
conducting.

The partially filled rectangular waveguide is a 2D-uniform guiding structure.
General Hertz potentials for 2D-uniform guiding structures were found in
Section 2.5. Contrary to Chapter 3, the Hertz vector potential 

�

∏  will here
not only depend on the z-coordinate, but the y-coordinate as well.

Therefore,
( )

�

�

∏ = ∏ −y z e ej x
z

x, β . (1)
while
u z u x u y1 2 3= = =; ; .

ε µ σ2 2 2, ,

ε µ σ1 1 1, ,
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Substituting (1) into (2.10) results in general expressions for the field
components of  E-type waves in one of the media

E k
zz e

e= ∏ +
∏2

2

2

∂
∂

;   Hz = 0 ,

E j
zx x

e= −
∏

β
∂
∂

;   ( )H j
yx

e= +
∏

σ ωε
∂
∂

, (2)

E
z yy

e=
∏∂

∂ ∂

2

;   ( )H j jy x e= + ∏β σ ωε .

From (2) it can be seen that the E-type waves in a partially filled rectangular
waveguide are longitudinal section magnetic (LSM) waves. The magnetic
field intensity 

�

H has no component in the direction normal to the material
interface ( )Hz = 0 .

Substituting (1) into (2.11) leads general expressions for the field
components of  H-type waves in one of the media

H k
zz m

m= ∏ +
∏2

2

2

∂
∂

;   Ez = 0,

H j
zx x

m= −
∏

β
∂
∂

;   E j
yx

m= −
∏

ωµ
∂
∂

, (3)

H
z yy

m=
∏∂

∂ ∂

2

;   Ey x m= ∏β ωµ .

From (3) one can conclude that the H-type waves in a partially filled
rectangular waveguide are longitudinal section electric (LSE) waves. The
electric field intensity 

�

E  has no component in the direction normal to the
material interface ( )Ez = 0 .
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6.3.3 E-Type Waves in a Partially Filled Rectangular Waveguide

A suitable Hertz function for medium 1 that satisfies the boundary
conditions
E E at y and yx z= = = < < +∞0 0 0 ,
E E at zx y= = =0 0

is ( ) ( )∏ = −
1 1 1 1A s y s z ey z

j xxsin cos β . (4)

Introducing (4) into (2)
( ) ( ) ( )E A k s s y s z ez z y z

j xx
1 1 1

2
1

2
1 1= − −sin cos β , (5a)

( ) ( )E j A s s y s z ex x z y z
j xx

1 1 1 1 1= −β βsin sin , (5b)

( ) ( )E A s s s y s z ey y z y z
j xx

1 1 1 1 1 1= − −cos sin β , (5c)
Hz1 0= , (5d)

( ) ( ) ( )H j A s s y s z ex y y z
j xx

1 1 1 1 1 1 1= + −σ ωε βcos cos , (5e)

( ) ( ) ( )H j j A s y s z ey x y z
j xx

1 1 1 1 1 1= + −β σ ωε βsin cos . (5f)

An additional boundary condition is
E E at y ax z= = =0 .

Hence, s a n s n
ay y1 1= ⇒ =π π (6)

where n is a positive integer different from zero.
n=0 corresponds to the solution for a partially filled parallel plate
waveguide.

A suitable Hertz function for medium 2 that satisfies the boundary
conditions
E E at y and yx z= = = < < +∞0 0 0 ,
E E at z bx y= = =0

is ( ) ( )[ ]∏ = − −
2 2 2 2A s y s z b ey z

j xxsin cos β . (7)

Introducing (7) into (2)
( ) ( ) ( )[ ]E A k s s y s z b ez z y z

j xx
2 2 2

2
2

2
2 2= − − −sin cos β , (8a)

( ) ( )[ ]E j A s s y s z b ex x z y z
j xx

2 2 2 2 2= − −β βsin sin , (8b)

( ) ( )[ ]E A s s s y s z b ey y z y z
j xx

2 2 2 2 2 2= − − −cos sin β , (8c)
Hz1 0= , (8d)

( ) ( ) ( )[ ]H j A s s y s z b ex y y z
j xx

2 2 2 2 2 2 2= + − −σ ωε βcos cos , (8e)

( ) ( ) ( )[ ]H j j A s y s z b ey x y z
j xx

2 2 2 2 2 2= + − −β σ ωε βsin cos . (8f)

An additional boundary condition is
E E at y ax z= = =0 .

Hence, s a n s n
ay y2 2= ⇒ =π π . (9)
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By virtue of (2.13), (2.15), (6) and (9)

s s n
a

s s k s k n
ay z z x z x1

2
1

2
2

1
2

1
2

1
2 2

1 1
2

2
2+ = 





+ = = − ⇒ = + − 





−π β π β , (10)

s s n
a

s s k s k n
ay z z x z x2

2
2

2
2

2
2

2
2

2
2 2

2 2
2

2
2+ = 





+ = = − ⇒ = + − 





−π β π β . (11)

Choosing the negative square roots would have no effect on the results.

The tangential components of 
�

E  and 
�

H are continuous across the interface
of two media. Furthermore, it was shown that s sy y1 2= .

Hence,
E E and E E at z hx x y y1 2 1 2= = =

( ) ( )[ ]⇒ = − −A s s h A s s b hz z z z1 1 1 2 2 2sin sin , (12)

as well as H H and H H at z hx x y y1 2 1 2= = =

( ) ( ) ( ) ( )[ ]⇒ + = + −σ ωε σ ωε1 1 1 1 2 2 2 2j A s h j A s b hz zcos cos . (13)

Note that (12) and (13) would have resulted in a set of contradictory
equations, if 

�

∏  were chosen in any direction other than the z-direction.

Dividing (12) by (13) yields

( ) ( )[ ]s
j

s h s
j

s b hz
z

z
z

1

1 1
1

2

2 2
2σ ωε σ ωε+

= −
+

−tan tan (14)

or by virtue of (10) and (11)

k n
a
j

h k n
a

x

x

1
2

2
2

1 1
1
2

2
2

− 





−

+
− 





−












π β

σ ωε
π βtan

( )= −
− 





−

+
− − 





−












k n
a
j

b h k n
a

x

x

2
2

2
2

2 2
2
2

2
2

π β

σ ωε
π βtan (15)

This dispersion equation is transcendental and can therefore only be solved
numerically for β x .

Letting h = 0 in (15), results in

β π π
x k n

a
m
b

= − 





− 



2

2
2 2

, the dispersion equation of the TEnm empty

waveguide modes.
The dispersion equation for the TEnm modes of the homogeneously filled
waveguide is obtained by letting h=b in (15).
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6.3.4 H-Type Waves in a Partially Filled Rectangular Waveguide

A suitable Hertz function for medium 1 that satisfies the boundary
conditions
E E at y and yx z= = = < < +∞0 0 0 ,
E E at zx y= = =0 0

is ( ) ( )∏ = −
1 1 1 1A s y s z ey z

j xxcos sin β . (17)

Introducing (17) into (3)
( ) ( ) ( )H A k s s y s z ez z y z

j xx
1 1 1

2
1

2
1 1= − −cos sin β , (18a)

( ) ( )H j A s s y s z ex x z y z
j xx

1 1 1 1 1= − −β βcos cos , (18b)

( ) ( )H A s s s y s z ey y z y z
j xx

1 1 1 1 1 1= − −sin cos β , (18c)
Ez1 0= , (18d)

( ) ( )E j A s s y s z ex y y z
j xx

1 1 1 1 1 1= −ωµ βsin sin , (18e)

( ) ( )E A s y s z ey x y z
j xx

1 1 1 1 1= −β ωµ βcos sin . (18f)

An additional boundary condition is
E E at y ax z= = =0 .

Hence, s a n s n
ay y1 1= ⇒ =π π (19)

where n is a positive integer different from zero.

A suitable Hertz function for medium 2 that satisfies the boundary
conditions
E E at y and yx z= = = < < +∞0 0 0 ,
E E at z bx y= = =0

is ( ) ( )[ ]∏ = − −
2 2 2 2A s y s z b ey z

j xxcos sin β . (20)

Introducing (20) into (3)
( ) ( ) ( )[ ]H A k s s y s z b ez z y z

j xx
2 2 2

2
2

2
2 2= − − −cos sin β , (21a)

( ) ( )[ ]H j A s s y s z b ex x z y z
j xx

2 2 2 2 2= − − −β βcos cos , (21b)

( ) ( )[ ]H A s s s y s z b ey y z y z
j xx

2 2 2 2 2 2= − − −sin cos β , (21c)
Ez1 0= , (21d)

( ) ( )[ ]E j A s s y s z b ex y y z
j xx

2 2 2 2 2 2= − −ωµ βsin sin , (21e)

( ) ( )[ ]E A s y s z b ey x y z
j xx

2 2 2 2 2= − −β ωµ βcos sin . (21f)

An additional boundary condition is
E E at y ax z= = =0 .

Hence, s a n s n
ay y2 2= ⇒ =π π . (22)
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By virtue of (2.13), (2.15), (19) and (22)

s s n
a

s s k s k n
ay z z x z x1

2
1

2
2

1
2

1
2

1
2 2

1 1
2

2
2+ = 





+ = = − ⇒ = + − 





−π β π β , (23)

s s n
a

s s k s k n
ay z z x z x2

2
2

2
2

2
2

2
2

2
2 2

2 2
2

2
2+ = 





+ = = − ⇒ = + − 





−π β π β . (24)

Choosing the negative square roots would have no effect on the results.

The tangential components of 
�

E  and 
�

H are continuous across the interface
of two media. Furthermore, it was shown that s sy y1 2= .

Hence,
H H and H H at z hx x y y1 2 1 2= = =

( ) ( )[ ]⇒ = −A s s h A s s b hz z z z1 1 1 2 2 2cos cos , (25)

as well as E E and E E at z hx x y y1 2 1 2= = =

( ) ( )[ ]⇒ = − −µ µ1 1 1 2 2 2A s h A s b hz zsin sin . (26)

Note that (26) and (25) would have resulted in a set of contradictory
equations, if 

�

∏  were chosen in any direction other than the z-direction.

Dividing (26) by (25) and multiplying both sides by jω  yields

( ) ( )[ ]j
s

s h j
s

s b h
z

z
z

z
ωµ ωµ1

1
1

2

2
2tan tan= − − (27)

or by virtue of (23) and (24)

j

k n
a

h k n
a

x

x
ωµ

π β

π β1

1
2

2
2

1
2

2
2

− 





−

− 





−












tan

( )= −

− 





−

− − 





−












j

k n
a

b h k n
a

x

x
ωµ

π β

π β2

2
2

2
2

2
2

2
2tan . (28)

This dispersion equation is transcendental and can therefore only be solved
numerically for β x .

Letting h = 0 in (15), results in

β π π
x k n

a
m
b

= − 





− 



2

2
2 2

, the dispersion equation of the TMnm empty

waveguide modes.
The dispersion equation for the TMnm modes of the homogeneously filled
waveguide is obtained by letting h=b in (28).
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6.3.5 On the Relation between Partially Filled Rectangular Waveguide
Modes and Plane Surface Waves

Compare the dispersion equations for plane surface waves, both E-type
(3.12) and H-type (3.23) with those of the waves in a partially filled
waveguide (14) and (27), respectively.

Dispersion equation for E-type plane surface wave modes:

( )s
j

s h js
j

z
z

z1

1 1
1

2

2 2σ ωε σ ωε+
=

+
tan (3.12)

Dispersion equation for E-type partially filled waveguide modes:

( ) ( )[ ]s
j

s h s
j

s b hz
z

z
z

1

1 1
1

2

2 2
2σ ωε σ ωε+

= −
+

−tan tan (14)

Dispersion equation for H-type plane surface wave modes:

( )j
s

s h j
jsz

z
z

ωµ ωµ1

1
1

2

2

tan = − (3.23)

Dispersion equation for H-type partially filled waveguide modes:

( ) ( )[ ]j
s

s h j
s

s b h
z

z
z

z
ωµ ωµ1

1
1

2

2
2tan tan= − − (27)

The only significant difference between them is a factor ( )[ ]tan s b hz2 −  on
the right hand side of the waveguide equations, which is replaced by -j for
plane surface waves.

However, one can show that
( )[ ]lim tan

( )
( )
b h
b h

z
z

z

s b h j
− →+∞
− →

− = −
α
β

2

2 0

2 (29)

where s jz z z2 2 2= −β α .

The proof is as follows:
( )[ ] ( )( )[ ]lim tan lim tan

( )
( )

( )
( )

b h
b h

z b h
b h

z z
z

z

z

z

b h s b h j
− →+∞
− →

− →+∞
− →

− = − −
α
β

α
β

β α
2

2

2

20

2

0

2 2

( )[ ] ( )[ ]
( )[ ] ( )[ ]=
− − −

+ − ⋅ −− →+∞
− →

lim
tan tan

tan tan( )
( )
b h
b h

z z

z zz

z

b h j b h
b h j b hα

β

β α
β α2

2 0

2 2

2 21
   [8, p. 15]

( )[ ] ( )[ ]
( )[ ] ( )[ ]=

− − ⋅ −
+ ⋅ − ⋅ −− →+∞

− →

lim
tan tanh

tan tanh( )
( )
b h
b h

z z

z zz

z

b h j b h
j b h b hα

β

β α
β α2

2 0

2 2

2 21
   [8, p. 31]

= − j    [8, p. 29]
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It is possible that the requirement ( )b h z− → +∞α 2 , is not met by thin
samples and/or samples with low values for their permittivity and
permeability (see also Section 3.4.5). The requirement ( )b h z− →β 2 0  may
cause problems for sample materials with extremely high losses, because
βz2 becomes highly negative (see Fig. 3.8). Although the factor ( )b h−  gives
an additional degree of freedom, it should not be chosen too small though.
In practice, both requirements are usually met even by surface wave
absorbing materials, as is demonstrated by Example 3.

If both requirements are met, the phase constants of the partially filled
waveguide modes will differ from those of the plane surface wave modes by
a known constant term only.
Namely, in view of (3.8a), (3.19a), (11) and (24)

β β π
α
β

α
β

xS b h
b h

xW b h
b h

z

z

z

z

n
a

( )
( )

( )
( )

− →+∞
− →

− →+∞
− →

= + 



2

2

2

20

2

0

2

(30)

where βS is the phase constant of a proper surface wave mode and βW the
phase constant of the corresponding partially filled waveguide mode.



The Plane Surface Wave Simulator Cell: Example 1
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.33 0.001j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..8.5 109 Hz ω ..2 π f =ω 5.341 1010 Hz λ 0
c 0
f

=λ 0 0.035 m

Enter the thickness of the coating:

h .0.00615 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 178.147
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 271.929 0.058j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 178.147

rad
m
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E-type proper surface wave modes:

F ES β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β xES root ,F ES β x β x =β xES 214.379 0.036j

rad
m

=F ES β xES 2.091 10 9 1.441 10 6 j kg m2 sec 1 coul 2

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
rad
m

x ..,0 1 N y ..,0 1 N ∆x
End x Start x

N
∆y

End y Start y
N

B ES ,x y
log ..F ES Start x .x ∆x .j Start y .y ∆y

siemens
m

m
rad

Im(βx) [rad/m]

0 100 200

200

100

0

100

200

B ES Re(βx) [rad/m]

136



Waveguide dimensions and mode:

a .0.022860 m b .0.034040 m n 1

E-type modes in partially filled waveguide:

F EW1 β x
.

k 1
2 .n π

a

2
β x

2

σ1
..j ω ε 1

tan .h k 1
2 .n π

a

2
β x

2

F EW2 β x
.

k 2
2 .n π

a

2
β x

2

σ2
..j ω ε 2

tan .( )b h k 2
2 .n π

a

2
β x

2

F EW β x F EW1 β x F EW2 β x

β x β xES
2 .n π

a

2
β xEW root ,F EW β x β x =β xEW 164.618 0.047j

rad
m

=F ES β xES 2.091 10 9 1.441 10 6 j kg m2 sec 1 coul 2

β xEWc β xEW
2 .n π

a

2
=β xEWc 214.442 0.036j

rad
m

=β xEW 164.618 0.047j
rad
m

=
β xEWc β xES

β xES
0.03 % =

β xEWc β xES
k 1 k 2

0.067 %
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The Plane Surface Wave Simulator Cell: Example 2
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 2.33 0.001j µ r1 1 0j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..8.5 109 Hz ω ..2 π f =ω 5.341 1010 Hz λ 0
c 0
f

=λ 0 0.035 m

Enter the thickness of the coating:

h .0.00325 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 178.147
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 271.929 0.058j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 178.147

rad
m
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E-type proper surface wave modes:

F ES β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β xES root ,F ES β x β x =β xES 188.666 0.009j

rad
m

=F ES β xES 4.649 10 6 + 9.477 10 4 j kg m2 sec 1 coul 2
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m
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N
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Waveguide dimensions and mode:

a .0.022860 m b .0.034040 m n 1

E-type modes in partially filled waveguide:

F EW1 β x
.

k 1
2 .n π

a

2
β x

2

σ1
..j ω ε 1

tan .h k 1
2 .n π

a

2
β x

2

F EW2 β x
.

k 2
2 .n π

a

2
β x

2

σ2
..j ω ε 2

tan .( )b h k 2
2 .n π

a

2
β x

2

F EW β x F EW1 β x F EW2 β x

β x β xES
2 .n π

a

2
β xEW root ,F EW β x β x =β xEW 130.216 0.012j

rad
m

=F ES β xES 4.649 10 6 + 9.477 10 4 j kg m2 sec 1 coul 2

β xEWc β xEW
2 .n π

a

2
=β xEWc 189.321 0.008j

rad
m

=β xEW 130.216 0.012j
rad
m

=
β xEWc β xES

β xES
0.347 % =

β xEWc β xES
k 1 k 2

0.699 %
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The Plane Surface Wave Simulator Cell: Example 3
Constants:

c 0 .299792458
m

sec
µ 0

...4 π 10 7 henry
m

ε 0
1
.c 0

2 µ 0
=ε 0 8.854 10 12 farad

m

Enter the material parameters:

σ1
.0
siemens

m
ε r1 7.4 0.15j µ r1 1.4 0.48j

σ2
.0
siemens

m
ε r2 1 0j µ r2 1 0j

Enter the frequency:

f ..8.6 109 Hz ω ..2 π f =ω 5.404 1010 Hz λ 0
c 0
f

=λ 0 0.035 m

Enter the thickness of the coating:

h .0.00075 m

Complex wave numbers:

ε 1
.ε r1 ε 0 ε 2

.ε r2 ε 0

µ 1
.µ r1 µ 0 µ 2

.µ r2 µ 0

k 0 .ω .ε 0 µ 0 =k 0 180.243
rad
m

k 1 ...j ω µ 1 σ1
..j ω ε 1 =k 1 587.412 104.031j

rad
m

(k2 must be smaller than k1!)

k 2 ...j ω µ 2 σ2
..j ω ε 2 =k 2 180.243

rad
m
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E-type proper surface wave modes:

F ES β x
.

k 1
2 β x

2

σ1
..j ω ε 1

tan .h k 1
2 β x

2 .
Re β x

2 k 2
2

Re β x
2 k 2

2

β x
2 k 2

2

σ2
..j ω ε 2

β x
k 1 k 2

2
β xES root ,F ES β x β x =β xES 182.647 2.328j

rad
m

=F ES β xES 2.203 10 4 + 6.845 10 4 j kg m2 sec 1 coul 2

N 301 Start x .0
rad
m

End x Re k 1 Start y .250
rad
m

End y .250
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x ..,0 1 N y ..,0 1 N ∆x
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N
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siemens
m

m
rad

Im(βx) [rad/m]

0 200 400

200

100

0

100

200

B ES Re(βx) [rad/m]

144



Waveguide dimensions and mode:

a .0.022860 m b .0.034040 m n 1

E-type modes in partially filled waveguide:

F EW1 β x
.

k 1
2 .n π

a

2
β x

2

σ1
..j ω ε 1

tan .h k 1
2 .n π

a

2
β x

2

F EW2 β x
.

k 2
2 .n π

a

2
β x

2

σ2
..j ω ε 2

tan .( )b h k 2
2 .n π

a

2
β x

2

F EW β x F EW1 β x F EW2 β x

β x β xES
2 .n π

a

2
β xEW root ,F EW β x β x =β xEW 122.142 3.364j

rad
m

=F ES β xES 2.203 10 4 + 6.845 10 4 j kg m2 sec 1 coul 2

β xEWc β xEW
2 .n π

a

2
=β xEWc 183.844 2.235j

rad
m

=β xEW 122.142 3.364j
rad
m

=
β xEWc β xES

β xES
0.655 % =

β xEWc β xES
k 1 k 2

0.287 %
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6.3.6 The Plane Surface Wave Simulator Cell

A plane surface wave simulator cell (Fig. 6.4) has been designed to
measure the complex phase constant of a fundamental E-mode plane
surface wave mode at X-band frequencies. The experimental system can
be used to measure materials up to approximately 8mm in thickness. A
sample of the material under test is placed on the floor of the test cell over
its entire length, 800mm for this design. The first section of the test cell, �,
is a section of standard X-band waveguide. A coax to waveguide adaptor
fits to the input of the test cell. Along the length of section �, the sample is
tapered in the H-plane to provide a matched transition between the empty
and partially filled waveguide sections. The transition converts the
fundamental empty waveguide mode TE10 into a fundamental (n=1) partially
filled waveguide mode. After this transition, the waveguide height is
increased to 34.04mm via a taper (section �) on the upper horizontal wall
of the waveguide. A taper from 10.16mm to 34.04 mm (the height of a
WG10 S-band waveguide) is quite common in industry and will not convert
a lot of fundamental mode energy into higher order modes. Section � will
support the fundamental partially filled waveguide mode that resembles the
plane surface wave. At the furthest end, the test cell is terminated with a
short circuit �. The test cell can be opened at the top. This makes
fastening  the test material a lot easier. However, this also implies that the
waveguide has to be cut along its length. The cut is parallel with the H-
plane and located in a corner of the waveguide as field intensities are at
their lowest there. Also, the wall thickness of the waveguide is an odd
multiple of the trapping distance of a standard WG16 X-band waveguide
flange. The screws are positioned at an even multiple of this distance.
Detailed engineering drawings are included at the end of this section.

 
Figure 6.4: Cutaway view of the plane surface wave simulator cell
(not to scale)

�

�

�

�

Short

Sample
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Two or more measurements of the input impedance Zin are made  the
plane surface wave simulator cell terminated by a short circuit at different
positions. From this, the complex propagation constant of the fundamental
partially filled waveguide mode in section � can be obtained as follows.

The input impedance Zin of a transmission line of length �  and terminated
by a short  circuit is given by the following expression

( )Z jZin c= tan β� (31)
where Zc is the characteristic impedance of the transmission line.

Rearranging (31) for Zc gives

( ) ( )Z Z
j

jZc
in

in=
⋅

= −
tan

cot
β

β
�

� . (32)

The wave impedance of a waveguide corresponds to the characteristic
impedance of a transmission line. Moreover, the wave impedance is
constant over the length of section �. Hence, for two input impedance
measurements made with a short circuit in two different positions:

( ) ( )− = −jZ jZin m in m1 1 2 2cot cotβ β� �

( ) ( )⇒ =Z Zin m in m1 1 2 2cot cotβ β� � (33)
where βm is the measured complex phase constant of the fundamental
partially filled waveguide mode in section �.

Equation (33) is a transcendental and can therefore only be solved
numerically for βm. In general, equation (33) will have more than one
solution. There are two ways of finding the right solution. If the permittivity
and permeability of the material under test is known from other
measurements, the correct solution will be the solution closest to the
theoretical value of βS. However, in many cases, very little is known on the
electromagnetic properties of surface wave absorbing materials. For these
materials, more than two input impedance measurements are needed,
resulting in additional equations similar to (33). The correct solution in this
case is the solution which all equations have in common.

The input impedance data is obtained from reflection measurements made
with the aid of a vector network analyser (VNA). Here, the reflection
measurements are calibrated for tracking error (variations in magnitude and
phase frequency response) using an additional measurement which defines
the phase reference plane. The remaining two systematic errors are
reduced using time domain filtering. The dimensions of the test cell ensure
the time domain response of the sample is isolated from other error
responses. Note that the directivity error is not only caused by leakage
signals in the separation device of the VNA but is also due to residual
reflection effects of test cables, adaptors and waveguide transitions
between the signal separation device and the measurement plane. Source
match error is particularly a problem when measuring very high or very low
impedances (large mismatch at the measurement plane) [9].
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6.3.7  Measurement Results

Measurements have been performed using high molecular weight poly-
ethylene (HMW-PE). Material thicknesses of 6.15mm and 3.25mm have
been used. Because polyethylene has very low losses, only results relating
to phase constants have been calculated. The measurement of lossy
materials is made marginally easier by the reduction in the magnitude of the
source match error.

The cell has only been used to interrogate the fundamental E-type plane
surface wave mode because only a probe-type coax to waveguide adaptor
was available. However, the same test cell could also be used to
interrogate the fundamental H-type plane surface wave mode by employing
a loop-type coax to waveguide adaptor.

Results for measurements of the fundamental E-type plane surface wave
mode are presented on the following pages. The tabulated quantities are:
βS_th is the theoretical predicted value for the phase constant of the proper

fundamental E-type plane surface wave; this value is obtained from 
equation (3.13), using measured data of ε r and µr,

βW_th&cis the theoretical value for the phase constant of the fundamental E-
type partially filled waveguide mode (eq. (15)), corrected for 
horizontal confinement (eq. (30)),

βm&c is the value for the measured phase constant of the fundamental E-
type partially filled waveguide mode, obtained from Zin1, Zin2 and 
equation (33), also corrected for horizontal confinement (eq. (30)),

relative error m c S th

S th

=
−β β

β
& _

_

, (34)

no al error
k k

m c S thmin & _=
−
−

β β

1 2

, (35)

and finally, the relative estimated uncertainty in βm&c due to measurement
uncertainties in Zin1 and Zin2 are given by
∂β
∂

m c

Z
&

1

 and ∂β
∂

m c

Z
&

2

, respectively.

If the measurement uncertainties ∆Zin1 and ∆Zin2 were known, then the total
estimated uncertainty in βm&c could be calculated as follows

∆β ∆ ∆m c
m c

in
in

m c

in
inZ

Z
Z

Z&
& &= ⋅







 + ⋅









∂β
∂

∂β
∂1

1

2

2
2

2

. (36)

However, in practice, it is extremely difficult to make reasonable estimations
of the measurement uncertainties ∆Zin1 and ∆Zin2; the values specified in
the VNA manual are very pessimistic worst-case values and hence not
realistic.
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The results show good agreement between the measured and predicted
values. Due to the higher impedance mismatch between the empty and
partially filled sections of waveguide, an increase in ripple is seen in the
data corresponding to the 6.15mm sample. However, improved tapering
between the empty and partially filled sections would reduce this error.
Care should also be taken when fastening the sample in the test cell. Air
gaps between the sample and the bottom of the test cell can significantly
affect the results.



The Plane Surface Wave Simulator Cell

Measurement Results for a 6.15mm Thick HMW-PE Sample

Physical constants
c0 (m/s) 299 792 458
µ0 (H/m) 1.257E-06
ε0 (F/m) 8.854E-12

Material parameters
medium 1 medium 2

εr 2.33 1.00
µr 1.00 1.00

ε (F/m) 2.063E-11 8.854E-12
µ (H/m) 1.257E-06 1.257E-06
h (m) 6.000E-03

Results
f (Hz) βS_th (rad/m) βW_th&c (rad/m) Xin1 (Ω) Xin2 (Ω) βm&c (rad/m) rel. err. nom. err. ∂βm&c/∂Zin1 (rad·m-1·Ω-1) ∂βm&c/∂Zin2 (rad·m-1·Ω-1)

8.00E+09 198.5 198.7 +12.4 +75.8 202.0 +1.7% +3.9% NC NC
8.50E+09 214.4 214.4 +46.1 -168 215.4 +0.5% +1.1% 3.65E-04 3.18E-03
9.00E+09 230.5 230.5 +122 -46.7 229.5 -0.4% -1.0% 5.68E-03 1.48E-02
9.50E+09 246.9 246.9 -361 -13.3 244.1 -1.1% -2.6% 9.61E-04 2.61E-02
1.00E+10 263.4 263.4 -102 +12.5 260.0 -1.3% -3.1% 5.08E-03 4.12E-02
1.05E+10 280.1 280.1 -59.0 +44.9 282.6 +0.9% +2.1% 1.75E-02 2.30E-02
1.10E+10 296.9 296.9 -32.4 +74.0 295.4 -0.5% -1.2% 3.05E-02 1.33E-02
1.15E+10 313.8 313.8 -25.5 +196 308.5 -1.7% -4.2% 2.71E-02 3.52E-03
1.20E+10 330.7 331.0 -34.0 +865 334.7 +1.2% +3.0% 1.29E-02 5.06E-04
See text for more information on the tabulated quantities. NC means "Not Converging."
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The Plane Surface Wave Simulator Cell

Measurement Results for a 3.25mm Thick HMW-PE Sample

Physical constants
c0 (m/s) 299 792 458
µ0 (H/m) 1.257E-06
ε0 (F/m) 8.854E-12

Material parameters
medium 1 medium 2

εr 2.33 1.00
µr 1.00 1.00

ε (F/m) 2.063E-11 8.854E-12
µ (H/m) 1.257E-06 1.257E-06
h (m) 3.250E-03

Results
f (Hz) βS_th (rad/m) βW_th&c (rad/m) Xin1 (Ω) Xin2 (Ω) βm&c (rad/m) rel. err. nom. err. ∂βm&c/∂Zin1 (rad·m-1·Ω-1) ∂βm&c/∂Zin2 (rad·m-1·Ω-1)

8.000E+09 176.4 177.2 -2.0 +20.3 177.6 +0.7% +1.4% 7.84E-04 7.73E-03
8.500E+09 188.7 189.3 +16.5 +44.3 190.0 +0.7% +1.4% NC NC
9.000E+09 201.2 201.7 +29.9 -42.0 204.0 +1.4% +2.9% 2.09E-02 1.49E-02
9.500E+09 213.9 214.3 +76.9 -530 215.2 +0.6% +1.2% 4.90E-03 7.11E-04
1.000E+10 227.0 227.2 +36.5 +161 225.6 -0.6% -1.2% NC NC
1.050E+10 240.2 240.4 +41.1 -132 240.8 +0.2% +0.5% 1.69E-02 5.28E-03
1.100E+10 253.8 253.9 +70.6 -55.8 255.2 +0.5% +1.1% 1.32E-02 1.67E-02
1.150E+10 267.6 267.6 +83.4 -58.9 268.8 +0.5% +1.0% 1.18E-02 1.66E-02
1.200E+10 281.7 281.7 +96.7 -67.6 282.6 +0.3% +0.7% 1.06E-02 1.52E-02
See text for more information on the tabulated quantities. NC means "Not Converging."
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6.4  Conclusions

Although soft boundaries form an electromagnetic superior solution for
reducing the RCS resulting from edge diffracted waves, isotropic surface
wave absorbers remain useful in many applications, even for RCS
management of edge diffracted waves.

A new measuring apparatus based on a partially filled rectangular
waveguide has been developed for determining the attenuation constant
and phase constant of plane surface waves propagating along metal-
backed surface wave absorbing materials. Measurements were perfomed
which validate this new measuring method.
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7 Conclusions

Edge diffracted waves resulting from surface discontinuities contribute
significantly to the radar cross section of an object. Although this problem
could be alleviated by altering the shape of the discontinuity, this is not
always possible due to other mission requirements.

The use of isotropic surface wave absorbing materials is often advocated to
remedy the problem of edge diffracted waves. However, this work has
shown that the efficacy of isotropic surface wave absorbing materials is
strongly polarization dependent. Hence, isotropic surface wave absorbing
materials are only useful in a limited number of applications.

A superior solution consists in replacing the scattering surface by a soft
surface. When properly oriented, a soft surface will suppress all radiation
(both space wave and surface wave) in the direction of the radar,
independently of the radar polarization and the polarization of the edge
diffracted waves. In this process, the incident radar energy is not absorbed
but reradiated in directions away from the radar.

Notwithstanding the limited applicability of isotropic surface wave
absorbers, there is still an enormous amount of interest in characterizing
these commercially available materials. A new measuring apparatus based
on a partially filled rectangular waveguide has been developed for
determining the attenuation constant and phase constant of plane surface
waves along metal-backed isotropic surface wave absorbing materials.
Measurements have been performed which validate this new measuring
method.
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Further Work

A better understanding of the mechanisms that lie at the origin of edge
diffracted waves is needed. More information could be obtained by
developing a computer program that solves the coated wedge problem.

Little is published on the propagation of surface waves along anisotropic
and gyrotropic materials. This is important because nearly all of today’s
new aircraft have a high number of parts or  are completely constructed out
of carbon fibre, which is an anisotropic material.

The new measuring apparatus for characterizing surface wave absorbers
still needs to be tested with multi-layered and lossy materials. Furthermore,
the test cell was designed to interrogate the fundamental E-type plane
surface wave at X-band frequencies. A similar cell could be build to
interrogate the fundamental H-type plane surface wave. It may also be very
interesting to have test cells for other radar frequency bands. The stealth
design community would welcome a database containing the characte-
ristics of existing surface wave absorbers at different radar frequencies.

Further work should also focus on the new technology of soft surfaces. To
the author’s knowledge, RCS measurements of objects with soft surfaces
have not been reported in literature yet. Finally, efforts should be made to
develop a broad-band soft surface.
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